
Больше чем зенковка

Зенкование, удаление заусенцев, выполнение фасок, машинная обработка маслоканалов на входе и выходе.

ИНСТРУМЕНТ ДЛЯ СНЯТИЯ ЗАУСЕНЦЕВ

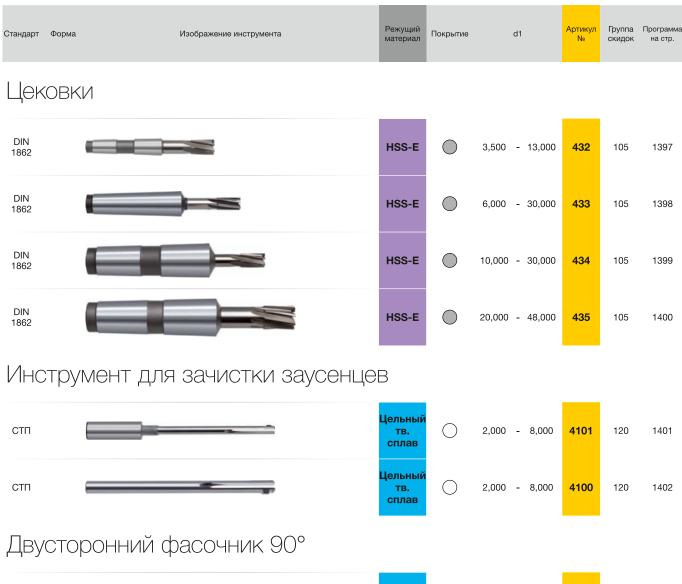
Инструмент для

Стандарт Фо	орма	Изображение инструмента		Режущий материал	Покрытие	ď	1	Артикул №	Группа скидок	Программа на стр.
Кони	ческие зен	ковки 60°								
DIN 334	С			HSS	\bigcirc	6,300 -	25,000	472	105	1371
DIN 334	Α			HSS	>Ø 8,00	8,000 -	20,000	470	105	1372
DIN 334	D			HSS		16,000 -	80,000	473	105	1373
DIN 334	В			HSS		16,000 -	- 100,000	471	105	1374
Кони	ческие зен	ковки 90°								
DIN 335	Α			HSS	>Ø 8,00	8,000 -	20,000	474	105	1375
DIN 335	С			HSS	\bigcirc	4,300 -	31,000	476	105	1376
DIN 335	с			HSS	A	4,300 -	31,000	1326	105	1376
DIN 335	С			HSS	S	5,000 -	31,000	327	105	1376
DIN 335	D			HSS	\bigcirc	15,000 -	- 100,000	477	105	1377
DIN 335	D T	-		HSS	S	25,000 -	- 50,000	328	105	1377
DIN 335	В			HSS		16,000 -	- 100,000	475	105	1378
Набо	ры коничес	СКИХ ЗЕНКОВО	эк 90°							
DIN 335	С			HSS	\bigcirc	7,000 -	7,000	498	105	1379
DIN 335	С			HSS	S	7,000 -	7,000	499	105	1379
Обез покрытия	я Обработка паром	азотирование пенточек	азотирование	золотисто-коричневое	Э	A TIAIN	a TiA	NN nanoA	. A TiA	IN SuperA

(Cb) Carbo

(D) Cristall

FIRE/nanoFIRE


P AICrN

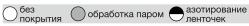
S TiN

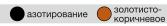
MolyGlide

S+ TiN+

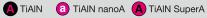
(Y) Signum

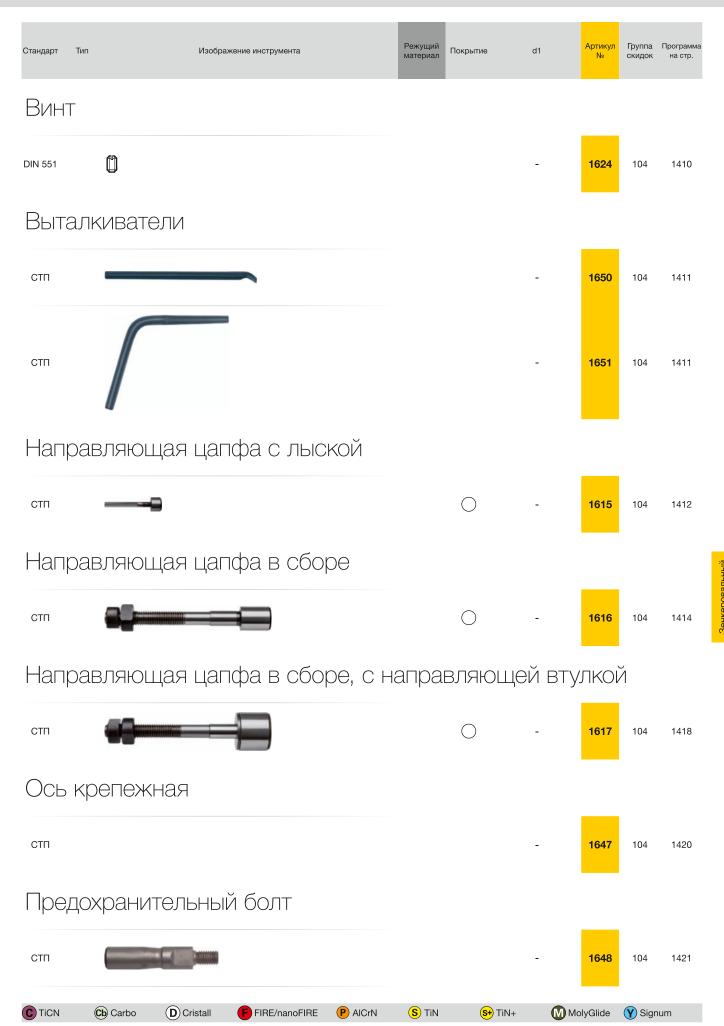
120 1403





Стандарт	Тип	Изображение инструмента	Режущий материал	Покрытие	d1	Артикул №	Группа скидок	Программа на стр.
Had	садные зенке	еры						
СТП	KS 125		HSS	0	12,000 - 57,000	1601	104	1404
СТП	KS 140		HSS	0	5,000 - 45,000	1602	104	1405
СТП	KS 108		Твердый сплав	0	5,900 - 75,000	1603	104	1406
СТП	KS 115		Твердый сплав	0	18,000 - 74,000	1604	104	1407
Цен	КОВКИ							
СТП	KS 100		Твердый сплав	0	9,000 - 67,000	1606	104	1408
Kor	НИЧЕСКИЕ ЗЕН	іковки 90°						
СТП	KS 100		HSS	0	12,000 - 30,000	1622	104	1409





СТП


1628

104

1425

GÜHRING

СПЕЦИАЛЬНЫЕ ЗЕНКЕРЫ И ЗЕНКОВКИ

Для особых случаев зенкования мы изготавливаем специальный инструмент по Вашему техническому заданию. Просто обратитесь к нам и мы предложим Вам оптимальную конструкцию необходимых специальных зенкеров и зенковок.

Предпочтительно выбирать инструмент, условное обозначение подачи которого выделенно жирным шрифтом.

Для глухих отверстий с точными допусками необходимо выбирать развертки с прямыми канавками.

Для многозубых зенковок в скобках указан диапазон диаметров для соответствующего числа зубьев.

Ha сайте фирмы Guhring www.guhring.ru Вы также найдете электронную версию Guhring-навигатора для выбора оптимального инструмента и рекомендуемых параметров резания.

Примеры материалов

Артикул № Стандарт/DIN Режущий материал Покрытие Angle de chanfrein Форма Программа на стр.

сож

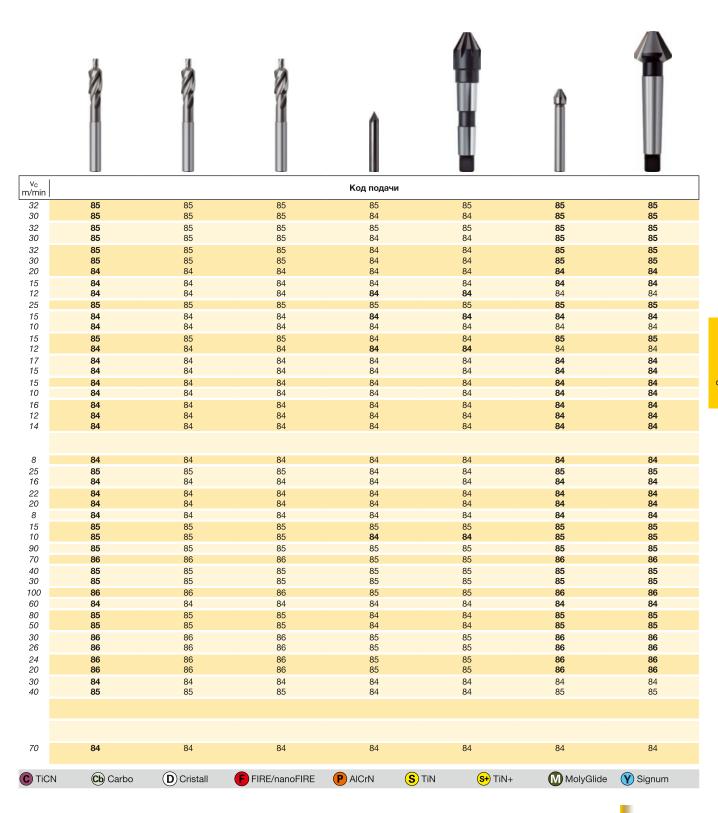
Тверд.

Пред. прочн. Н/мм²

Ø	Подача (№ в табл.)					
инструм.	81	82	83	84	85	86
в мм		1	f (MN	и/об)		
2,00	0,03	0,04	0,06	0,08	0,10	0,13
2,50	0,03	0,05	0,07	0,10	0,13	0,16
3,15	0,03	0,05	0,08	0,11	0,15	0,20
4,00	0,04	0,06	0,09	0,13	0,17	0,22
5,00	0,04	0,07	0,10	0,14	0,18	0,23
6,30	0,04	0,07	0,12	0,15	0,19	0,24
8,00	0,05	0,08	0,13	0,16	0,20	0,25
10,00	0,06	0,09	0,14	0,17	0,22	0,26
12,50	0,06	0,10	0,15	0,19	0,23	0,28
16,00	0,07	0,11	0,17	0,21	0,26	0,31
20,00	0,08	0,13	0,18	0,23	0,28	0,33
25,00	0,09	0,15	0,21	0,26	0,30	0,38
31,50	0,12	0,17	0,24	0,30	0,36	0,42
40,00	0,14	0,21	0,28	0,34	0,40	0,46
50,00	0,17	0,24	0,31	0,36	0,42	0,48
63,00	0,20	0,27	0,33	0,38	0,44	0,50
80,00	0,23	0,30	0,35	0,40	0,46	0,52
100,00	0,25	0,30	0,35	0,40	0,46	0,52

6	Охлаждение: эмульсия масло
	воздух
13 16 20	г о воздух
22 23 24	
25 26 28	
31 33 38	
42 46 48	
50 52	

жирным шрифтом выделено обозначение по DIN EN


	MUPHBINI EPICPTONI BBIACHENO GOGSHARENNE NO DITA ETA	I I/ IVIIVI		1
Углеродистые стали общего	1.0035 S185(St33), 1.0486 P275N(StE285), 1.0345 P235GH(H1), 1.0425 P265GH(H2)	≤500		
назначения	1.0050 E295 (St50-2), 1.0070 E360 (St70-2), 1.8937 P500NH (WStE500)	≤1000		
Автоматные стали (повышенной	1.0718 11SMnPb30 (9SMnPb28), 1.0736 11SMn37 (9SMn36)	≤850		
обрабатываемости резанием)	1.0727 46S20 (45S20), 1.0728 (60S20), 1.0757 46SPb20 (45SPb20)	≤1000		0
Углеродистые улучшенные стали	1.0402 C22, 1.1178 C30E (Ck30)	≤700		000
	1.0503 C45, 1.1191 C45E (Ck45)	≤850		0
	1.0601 C60, 1.1221 C60E (Ck60)	≤1000		
Легированные улучшенные стали	1.5131 50MnSi4, 1.7003 38Cr2, 1.7030 28Cr4	≤1000		8
	1.5710 36NiCr6, 1.7035 41Cr4, 1.7225 42CrMo4	≤1400		
Углеродистые цементиров. стали	1.0301 (C10), 1.1121 C10E (Ck10)	≤850		
Легированные цементированные	1.7276 10CrMo11, 1.5125 11MnSi6	≤1000		•
стали	1.5752 15NiCr13, 1.7131 16MnCr5, 1.7264 20CrMo5	≤1400		
Азотированные стали	1.8504 34CrAl6	≤1000		
	1.8519 31CrMoV9, 1.8550 34CrAlNi7	≤1400		
Инструментальные стали	1.1750 C75W, 1.2067 102Cr6, 1.2307 29CrMoV9	≤850		
	1.2080 X210Cr12, 1.2083 X42Cr13, 1.2419 105WCr6, 1.2767 X45NiCrMo4	≤1400		
Быстрорежущие стали	1.3243 S 6-5-2-5, 1.3343 S 6-5-2, 1.3344 S 6-5-3	≤1400		
Рессорно-пружинные стали	1.5026 55Si7, 1.7176 55Cr3, 1.8159 51CrV4 (51CrV4)		≤350 HB	
Нерж. стали, с содерж. серы	1.4005 X12CrS13, 1.4104 X14CrMoS17, 1.4105 X6CrMoS17, 1.4305 X8CrNiS18-9	≤900		
аустенитные	1.4301 X5CrNi18-10 (V2A), 1.4541 X6CrNiTi18-10, 1.4571 X6CrNiMoTi 17-12-2 (V4A)	≤1100		
мартенситные	1.4057 X20CrNi172 (X17CrNi16-2), 1.4122 X39CrMo17-1, 1.4521 X2CrMoTi18-2	≤1500		
Закаленные стали	-		≤48 HRC	
			≤66 HRC	Ŏ
Специальные сплавы	Nimonic, Inconel, Monel, Hastelloy	≤2000		
Серый чугун	GL-100 GL-200		≤240 HB	
	GL-250 GL-350		≤350 HB	ŎŎ
Высокопрочный и ковкий чугун	FGS-350-4, FGS-550-4, FGS-500-7		≤240 HB	
, , ,	FGS-700-2, FGS-700-2		≤350 HB	Ŏ
Отбеленный чугун	-		≤350 HB	
Титан и титановые сплавы	3.7024 Ti99,5, 3.7114 TiAl5Sn2,5, 3.7124 TiCu2	≤850		Ŏ
	3.7154 TiAl6Zr5, 3.7165 TiAl6V4, 3.7184 TiAl4Mo4Sn2,5, - TiAl8Mo1V1	≤1400		Ŏ
Алюминий и алюминиевые сплавы	3.0255 Al99,5, 3.2315 AlMqSi1, 3.3515 AlMq1	≤400		
Деформируемые алюмин. сплавы	3.0615 AlMgSiPb, 3.1325 AlCuMg1, 3.3245 AlMg3Si, 3.4365 AlZnMgCu1,5	≤650		
Лит. алюмин. сплавы ≤ 10% Si	3.2131 G-AlSi5Cu1, 3.2153 G-AlSi7Cu3, 3.2573 G-AlSi9	≤600		8
> 10 % Si	3.2581 G-AlSi12, 3.2583 G-AlSi12Cu, - G-AlSi12CuNiMg	≤600		Ŏ
Магниевые сплавы	3.5200 MgMn2, 3.5812.05 G-MgAl8Zn1, 3.5612.05 G-MgAl6Zn1	≤400		Ŏ
Медь, низколегированная	2.0070 SE-Cu, 2.1020 CuSn6, 2.1096 G-CuSn5ZnPb	≤500		Ŏ
Латунь с короткой стружкой	2.0380 CuZn39Pb2, 2.0401 CuZn39Pb3, 2.0410 CuZn43Pb2	≤600		Ŏ
с длинной стружкой	2.0250 CuZn20, 2.0280 CuZn33, 2.0332 CuZn37Pb0,5	≤600		
Бронза, с короткой стружкой	2.1090 CuSn7ZnPb, 2.1170 CuPb5Sn5, 2.1176 CuPb10Sn	≤600		
	2.0790 CuNi18Zn19Pb	≤850		
Бронза, с длинной стружкой	2.0916 CuAl5, 2.0960 CuAl9Mn, 2.1050 CuSn10	≤850		
Бропоа, о длишом отружком	2.0980 CuAl11Ni, 2.1247 CuBe2	≤1000		•
Пластмассы, термореактивные	Bakélite, Résopal, Pertinax, Moltopren	≤150		Ô
термопластичные	Plexiglas, Hostalen, Novodur, Macralon	≤100		00
Новые чугуны GKV	EN-GJV250 (GGV25), EN-GJV350 (GGV35)		≤220 HB	
. 100010 Tyryrior Circy	EN-GJV400 (GGV40), EN-GJV500 (GGV50), SiMo 6		≤300 HB	
Новые чугуны ADI	EN-GJS-800-8 (ADI800), EN-GJS-1000-5 (ADI1000)	≤1000		
. 1005.0 Lyr yribi 7101	EN-GJS-1200-2 (ADI1200), EN-GJS-1400-1 (ADI1400)	≤1400 ≤1400		88
армированные	Kevlar	≤1000		
· · · ·	GFK/CFK	≤1000		\sim
стекло- и углепластики	азотирование азотирование золотисто-	31000		

Группа материалов

Цековки и конические зенковки

436	437	438	470	471	472	473
1866	1866	1866	334	334	334	334
HSS	HSS	HSS	HSS	HSS	HSS	HSS
\bigcirc	\circ	\circ	>Ø 8,00		\circ	
90°	90°	90°	60°	60°	60°	60 °
			Α	В	С	D
1382	1383	1384	1374	1376	1373	1375

Предпочтительно выбирать инструмент, условное обозначение подачи которого выделенно жирным шрифтом.

Для глухих отверстий с точными допусками необходимо выбирать развертки с прямыми канавками.

Для многозубых зенковок в скобках указан диапазон диаметров для соответствующего числа зубьев.

Ha сайте фирмы Guhring www.guhring.ru Вы также найдете электронную версию Guhring-навигатора для выбора оптимального инструмента и рекомендуемых параметров резания.

Артикул № Стандарт/DIN Режущий материал Покрытие Angle de chanfrein Форма Программа на стр.

сож

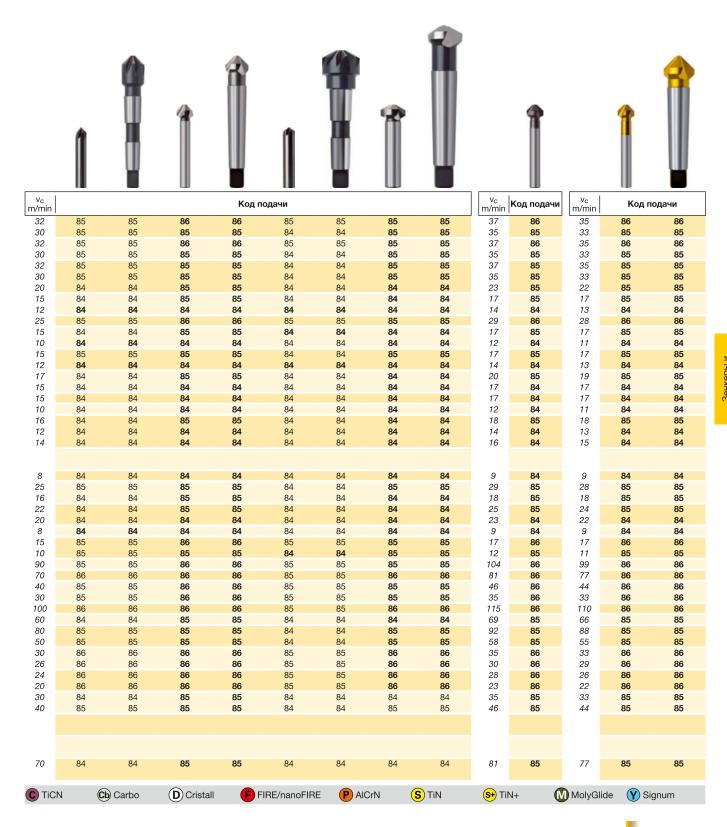
Тверд.

Пред. прочн. Н/мм²

NHCTPYM. St St St St St St St S	Ø	Подача (№ в табл.)					
2,00 0,03 0,04 0,06 0,08 0,10 0,13 2,50 0,003 0,05 0,07 0,10 0,13 0,16 3,15 0,03 0,05 0,07 0,10 0,13 0,17 0,22 5,00 0,04 0,06 0,09 0,13 0,17 0,22 5,00 0,04 0,07 0,10 0,14 0,18 0,23 6,30 0,04 0,07 0,12 0,15 0,19 0,24 8,00 0,05 0,08 0,13 0,16 0,20 0,25 10,00 0,06 0,09 0,14 0,17 0,22 0,26 12,50 0,06 0,10 0,15 0,19 0,23 0,28 12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,23 0,20 80,00 0,23 0,30 0,35 0,40 0,46 0,52		81	82	83	84	85	86
2,50 0,03 0,05 0,07 0,10 0,13 0,16 3,15 0,03 0,05 0,08 0,11 0,15 0,20 4,00 0,04 0,06 0,09 0,13 0,17 0,22 5,00 0,04 0,07 0,10 0,14 0,18 0,23 6,30 0,04 0,07 0,12 0,15 0,19 0,24 8,00 0,05 0,08 0,13 0,16 0,20 0,25 10,00 0,06 0,09 0,14 0,17 0,22 0,26 12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,31 25,00 0,09 0,15 0,21 0,26 0,30 0,38	ВММ			f (MN	и/об)		
3,15 0,03 0,05 0,08 0,11 0,15 0,20 4,00 0,04 0,06 0,09 0,13 0,17 0,22 5,00 0,04 0,07 0,10 0,14 0,18 0,23 6,30 0,04 0,07 0,12 0,15 0,19 0,24 8,00 0,05 0,08 0,13 0,16 0,20 0,25 10,00 0,06 0,09 0,14 0,17 0,22 0,26 12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,4	2,00	0,03	0,04	0,06	0,08	0,10	0,13
4,00 0,04 0,06 0,09 0,13 0,17 0,22 5,00 0,04 0,07 0,10 0,14 0,18 0,23 6,30 0,04 0,07 0,12 0,15 0,19 0,24 8,00 0,05 0,08 0,13 0,16 0,20 0,25 10,00 0,06 0,09 0,14 0,17 0,22 0,26 12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,17 0,24 0,31 0,36 0,	2,50	0,03	0,05	0,07	0,10	0,13	0,16
5,00 0,04 0,07 0,10 0,14 0,18 0,23 6,30 0,04 0,07 0,12 0,15 0,19 0,24 8,00 0,05 0,08 0,13 0,16 0,20 0,25 10,00 0,06 0,09 0,14 0,17 0,22 0,26 12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,07 0,24 0,31 0,36 0,42 0,44 40,00 0,14 0,21 0,28 0,34 0	3,15	0,03	0,05	0,08	0,11	0,15	0,20
6,30 0,04 0,07 0,12 0,15 0,19 0,24 8,00 0,05 0,08 0,13 0,16 0,20 0,25 10,00 0,06 0,09 0,14 0,17 0,22 0,26 12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,17 0,24 0,31 0,36 0,42 0,48 63,00 0,23 0,30 0,35 0,40 0,46 0,52	4,00	0,04	0,06	0,09	0,13	0,17	0,22
8,00 0,05 0,08 0,13 0,16 0,20 0,25 10,00 0,06 0,09 0,14 0,17 0,22 0,26 12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	5,00	0,04	0,07	0,10	0,14	0,18	0,23
10,00 0,06 0,09 0,14 0,17 0,22 0,26 12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,17 0,24 0,31 0,36 0,42 0,48 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	6,30	0,04	0,07	0,12	0,15	0,19	0,24
12,50 0,06 0,10 0,15 0,19 0,23 0,28 16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 60,00 0,17 0,24 0,31 0,36 0,42 0,48 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	8,00	0,05	0,08	0,13	0,16	0,20	0,25
16,00 0,07 0,11 0,17 0,21 0,26 0,31 20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,17 0,24 0,31 0,36 0,42 0,48 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	10,00	0,06	0,09	0,14	0,17	0,22	0,26
20,00 0,08 0,13 0,18 0,23 0,28 0,33 25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,17 0,24 0,31 0,36 0,42 0,48 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	12,50	0,06	0,10	0,15	0,19	0,23	0,28
25,00 0,09 0,15 0,21 0,26 0,30 0,38 31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,17 0,24 0,31 0,36 0,42 0,48 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	16,00	0,07	0,11	0,17	0,21	0,26	0,31
31,50 0,12 0,17 0,24 0,30 0,36 0,42 40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,17 0,31 0,36 0,42 0,48 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	20,00	0,08	0,13	0,18	0,23	0,28	0,33
40,00 0,14 0,21 0,28 0,34 0,40 0,46 50,00 0,17 0,24 0,31 0,36 0,42 0,48 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	25,00	0,09	0,15	0,21	0,26	0,30	0,38
50,00 0,17 0,24 0,31 0,36 0,42 0,48 63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	31,50	0,12	0,17	0,24	0,30	0,36	0,42
63,00 0,20 0,27 0,33 0,38 0,44 0,50 80,00 0,23 0,30 0,35 0,40 0,46 0,52	40,00	0,14	0,21	0,28	0,34	0,40	0,46
80,00 0,23 0,30 0,35 0,40 0,46 0,52	50,00	0,17	0,24	0,31	0,36	0,42	0,48
	63,00	0,20	0,27	0,33	0,38	0,44	0,50
100.00	80,00	0,23	0,30	0,35	0,40	0,46	0,52
100,00 0,25 0,30 0,35 0,40 0,46 0,52	100,00	0,25	0,30	0,35	0,40	0,46	0,52

Ø			Охлаждение:						
инструм.	81	82	83	84	85	86) эмульсия■ масло		
в мм	f (мм/об) воздух								
2,00	0,03	0,04	0,06	0,08	0,10	0,13			
2,50	0,03	0,05	0,07	0,10	0,13	0,16			
3,15	0,03	0,05	0,08	0,11	0,15	0,20			
4,00	0,04	0,06	0,09	0,13	0,17	0,22			
5,00	0,04	0,07	0,10	0,14	0,18	0,23			
6,30	0,04	0,07	0,12	0,15	0,19	0,24			
8,00	0,05	0,08	0,13	0,16	0,20	0,25			
10,00	0,06	0,09	0,14	0,17	0,22	0,26			
12,50	0,06	0,10	0,15	0,19	0,23	0,28			
16,00	0,07	0,11	0,17	0,21	0,26	0,31			
20,00	0,08	0,13	0,18	0,23	0,28	0,33			
25,00	0,09	0,15	0,21	0,26	0,30	0,38			
31,50	0,12	0,17	0,24	0,30	0,36	0,42			
40,00	0,14	0,21	0,28	0,34	0,40	0,46			
50,00	0,17	0,24	0,31	0,36	0,42	0,48			
63,00	0,20	0,27	0,33	0,38	0,44	0,50			
80,00	0,23	0,30	0,35	0,40	0,46	0,52			
100,00									
Группа ма	Группа материалов Примеры материалов жирным шрифтом выделено обозначение по DIN EN								

	г жирным шрифтом выделено осозначение по вту сту	I I/ IVIIVI		1
Углеродистые стали общего	1.0035 S185(St33), 1.0486 P275N(StE285), 1.0345 P235GH(H1), 1.0425 P265GH(H2)	≤500		
назначения	1.0050 E295 (St50-2), 1.0070 E360 (St70-2), 1.8937 P500NH (WStE500)	≤1000		O
Автоматные стали (повышенной	1.0718 11SMnPb30 (9SMnPb28), 1.0736 11SMn37 (9SMn36)	≤850		
обрабатываемости резанием)	1.0727 46S20 (45S20), 1.0728 (60S20), 1.0757 46SPb20 (45SPb20)	≤1000		O
Углеродистые улучшенные стали	1.0402 C22, 1.1178 C30E (Ck30)	≤700		000
	1.0503 C45, 1.1191 C45E (Ck45)	≤850		0
	1.0601 C60, 1.1221 C60E (Ck60)	≤1000		0
Легированные улучшенные стали	1.5131 50MnSi4, 1.7003 38Cr2, 1.7030 28Cr4	≤1000		8
	1.5710 36NiCr6, 1.7035 41Cr4, 1.7225 42CrMo4	≤1400		
Углеродистые цементиров. стали	1.0301 (C10), 1.1121 C10E (Ck10)	≤850		
Легированные цементированные	1.7276 10CrMo11, 1.5125 11MnSi6	≤1000		•
стали	1.5752 15NiCr13, 1.7131 16MnCr5, 1.7264 20CrMo5	≤1400		
Азотированные стали	1.8504 34CrAl6	≤1000		
	1.8519 31CrMoV9, 1.8550 34CrAlNi7	≤1400		
Инструментальные стали	1.1750 C75W, 1.2067 102Cr6, 1.2307 29CrMoV9	≤850		
	1.2080 X210Cr12, 1.2083 X42Cr13, 1.2419 105WCr6, 1.2767 X45NiCrMo4	≤1400		
Быстрорежущие стали	1.3243 S 6-5-2-5, 1.3343 S 6-5-2, 1.3344 S 6-5-3	≤1400		
Рессорно-пружинные стали	1.5026 55Si7, 1.7176 55Cr3, 1.8159 51CrV4 (51CrV4)		≤350 HB	
Нерж. стали, с содерж. серы	1.4005 X12CrS13, 1.4104 X14CrMoS17, 1.4105 X6CrMoS17, 1.4305 X8CrNiS18-9	≤900		
аустенитные	1.4301 X5CrNi18-10 (V2A), 1.4541 X6CrNiTi18-10, 1.4571 X6CrNiMoTi 17-12-2 (V4A)	≤1100		
мартенситные	1.4057 X20CrNi172 (X17CrNi16-2), 1.4122 X39CrMo17-1, 1.4521 X2CrMoTi18-2	≤1500		
Закаленные стали	-		≤48 HRC	
			≤66 HRC	•
Специальные сплавы	Nimonic, Inconel, Monel, Hastelloy	≤2000		
Серый чугун	GL-100 GL-200		≤240 HB	
	GL-250 GL-350		≤350 HB	ŎŎ
Высокопрочный и ковкий чугун	FGS-350-4, FGS-550-4, FGS-500-7		≤240 HB	
	FGS-700-2, FGS-700-2		≤350 HB	Ŏ
Отбеленный чугун	-		≤350 HB	
Титан и титановые сплавы	3.7024 Ti99,5, 3.7114 TiAl5Sn2,5, 3.7124 TiCu2	≤850		
	3.7154 TiAl6Zr5, 3.7165 TiAl6V4, 3.7184 TiAl4Mo4Sn2,5, - TiAl8Mo1V1	≤1400		Ō
Алюминий и алюминиевые сплавы	3.0255 Al99,5, 3.2315 AlMgSi1, 3.3515 AlMg1	≤400		
Деформируемые алюмин. сплавы	3.0615 AlMgSiPb, 3.1325 AlCuMg1, 3.3245 AlMg3Si, 3.4365 AlZnMgCu1,5	≤650		
Лит. алюмин. сплавы ≤ 10% Si	3.2131 G-AlSi5Cu1, 3.2153 G-AlSi7Cu3, 3.2573 G-AlSi9	≤600		8
> 10 % Si	3.2581 G-AlSi12, 3.2583 G-AlSi12Cu, - G-AlSi12CuNiMg	≤600		Ŏ
Магниевые сплавы	3.5200 MgMn2, 3.5812.05 G-MgAl8Zn1, 3.5612.05 G-MgAl6Zn1	≤400		0
Медь, низколегированная	2.0070 SE-Cu, 2.1020 CuSn6, 2.1096 G-CuSn5ZnPb	≤500		Ō
Латунь с короткой стружкой	2.0380 CuZn39Pb2, 2.0401 CuZn39Pb3, 2.0410 CuZn43Pb2	≤600		
с длинной стружкой	2.0250 CuZn20, 2.0280 CuZn33, 2.0332 CuZn37Pb0,5	≤600		
Бронза, с короткой стружкой	2.1090 CuSn7ZnPb, 2.1170 CuPb5Sn5, 2.1176 CuPb10Sn	≤600		
	2.0790 CuNi18Zn19Pb	≤850		
Бронза, с длинной стружкой	2.0916 CuAl5, 2.0960 CuAl9Mn, 2.1050 CuSn10	≤850		
	2.0980 CuAl11Ni, 2.1247 CuBe2	≤1000		Ŏ
Пластмассы, термореактивные	Bakélite, Résopal, Pertinax, Moltopren	≤150		Ŏ
термопластичные	Plexiglas, Hostalen, Novodur, Macralon	≤100		O O
Новые чугуны GKV	EN-GJV250 (GGV25), EN-GJV350 (GGV35)		≤220 HB	
, ,	EN-GJV400 (GGV40), EN-GJV500 (GGV50), SiMo 6		≤300 HB	
Новые чугуны ADI	EN-GJS-800-8 (ADI800), EN-GJS-1000-5 (ADI1000)	≤1000		00
, ,	EN-GJS-1200-2 (ADI1200), EN-GJS-1400-1 (ADI1400)	≤1400		ŎŎ
армированные	Keylar	≤1000		0
стекло- и углепластики	GFK/CFK	≤1000		Ŏ
		_		
обработка паработка параб	ом — азотирование азотирование описто-коричневое	TIAIN (a) TIAIN	InanoA 🛕 Alī	TiN SuperA
Спокрытия С				



Цековки и конические зенковки

474	475	476	477	478	479	480	481
335	335	335	335	347	347	Зав. ст.	Зав. ст.
HSS	HSS	HSS	HSS	HSS	HSS	HSS	HSS
>Ø 8,00		\circ	\bigcirc	>Ø 8,00		0	
90°	90°	90°	90°	120°	120°	120°	120°
Α	В	С	D	Α	В		
1377	1380	1378	1379	1385	1388	1386	1387

1326
335
HSS
A
90°
С
1378

327	328
335	335
HSS	HSS
S	S
90°	90°
С	D
1378	1379

Группа материалов

Предпочтительно выбирать инструмент, условное обозначение подачи которого выделенно жирным шрифтом.

Для глухих отверстий с точными допусками необходимо выбирать развертки с прямыми канавками.

Для многозубых зенковок в скобках указан диапазон диаметров для соответствующего числа зубьев.

Ha сайте фирмы Guhring www.guhring.ru Вы также найдете электронную версию Guhring-навигатора для выбора оптимального инструмента и рекомендуемых параметров резания.

Примеры материалов

Охлаждение: эмульсия масло воздух

Артикул № Стандарт/DIN Режущий материал Покрытие Направляющая цапфа Программа на стр.

сож

Тверд.

Пред. прочн.

Ø			Подача (і	№ в табл.)	
инструм.	81	82	83	84	85	86
в мм			f (MN	и/об)		
2,00	0,03	0,04	0,06	0,08	0,10	0,13
2,50	0,03	0,05	0,07	0,10	0,13	0,16
3,15	0,03	0,05	0,08	0,11	0,15	0,20
4,00	0,04	0,06	0,09	0,13	0,17	0,22
5,00	0,04	0,07	0,10	0,14	0,18	0,23
6,30	0,04	0,07	0,12	0,15	0,19	0,24
8,00	0,05	0,08	0,13	0,16	0,20	0,25
10,00	0,06	0,09	0,14	0,17	0,22	0,26
12,50	0,06	0,10	0,15	0,19	0,23	0,28
16,00	0,07	0,11	0,17	0,21	0,26	0,31
20,00	0,08	0,13	0,18	0,23	0,28	0,33
25,00	0,09	0,15	0,21	0,26	0,30	0,38
31,50	0,12	0,17	0,24	0,30	0,36	0,42
40,00	0,14	0,21	0,28	0,34	0,40	0,46
50,00	0,17	0,24	0,31	0,36	0,42	0,48
63,00	0,20	0,27	0,33	0,38	0,44	0,50
80,00	0,23	0,30	0,35	0,40	0,46	0,52
100,00	0,25	0,30	0,35	0,40	0,46	0,52

	жирным шрифтом выделено обозначение по DIN EN	Н/мм²		
Углеродистые стали общего	1.0035 S185(St33), 1.0486 P275N(StE285), 1.0345 P235GH(H1), 1.0425 P265GH(H2)	≤500		
назначения	1.0050 E295 (St50-2), 1.0070 E360 (St70-2), 1.8937 P500NH (WStE500)	≤1000		
Автоматные стали (повышенной	1.0718 11SMnPb30 (9SMnPb28), 1.0736 11SMn37 (9SMn36)	≤850		
обрабатываемости резанием)	1.0727 46S20 (45S20), 1.0728 (60S20), 1.0757 46SPb20 (45SPb20)	≤1000		
Углеродистые улучшенные стали	1.0402 C22, 1.1178 C30E (Ck30)	≤700		000
	1.0503 C45, 1.1191 C45E (Ck45)	≤850		
	1.0601 C60, 1.1221 C60E (Ck60)	≤1000		
Легированные улучшенные стали	1.5131 50MnSi4, 1.7003 38Cr2, 1.7030 28Cr4	≤1000		
	1.5710 36NiCr6, 1.7035 41Cr4, 1.7225 42CrMo4	≤1400		
Углеродистые цементиров. стали	1.0301 (C10), 1.1121 C10E (Ck10)	≤850		
Легированные цементированные	1.7276 10CrMo11, 1.5125 11MnSi6	≤1000		
стали	1.5752 15NiCr13, 1.7131 16MnCr5, 1.7264 20CrMo5	≤1400		
Азотированные стали	1.8504 34CrAl6	≤1000		
	1.8519 31CrMoV9, 1.8550 34CrAlNi7	≤1400		
Инструментальные стали	1.1750 C75W, 1.2067 102Cr6, 1.2307 29CrMoV9	≤850		
	1.2080 X210Cr12, 1.2083 X42Cr13, 1.2419 105WCr6, 1.2767 X45NiCrMo4	≤1400		
Быстрорежущие стали	1.3243 S 6-5-2-5, 1.3343 S 6-5-2, 1.3344 S 6-5-3	≤1400		
Рессорно-пружинные стали	1.5026 55Si7, 1.7176 55Cr3, 1.8159 51CrV4 (51CrV4)		≤350 HB	
Нерж. стали, с содерж. серы	1.4005 X12CrS13, 1.4104 X14CrMoS17, 1.4105 X6CrMoS17, 1.4305 X8CrNiS18-9	≤900		•
аустенитные	1.4301 X5CrNi18-10 (V2A), 1.4541 X6CrNiTi18-10, 1.4571 X6CrNiMoTi 17-12-2 (V4A)	≤1100		
мартенситные	1.4057 X20CrNi172 (X17CrNi16-2), 1.4122 X39CrMo17-1, 1.4521 X2CrMoTi18-2	≤1500		
Закаленные стали	-		≤48 HRC	•
			≤66 HRC	
Специальные сплавы	Nimonic, Inconel, Monel, Hastelloy	≤2000		
Серый чугун	GL-100 GL-200		≤240 HB	
	GL-250 GL-350		≤350 HB	00
Высокопрочный и ковкий чугун	FGS-350-4, FGS-550-4, FGS-500-7		≤240 HB	
	FGS-700-2, FGS-700-2		≤350 HB	Ŏ
Отбеленный чугун	-		≤350 HB	0
Титан и титановые сплавы	3.7024 Ti99,5, 3.7114 TiAl5Sn2,5, 3.7124 TiCu2	≤850		•
	3.7154 TiAl6Zr5, 3.7165 TiAl6V4, 3.7184 TiAl4Mo4Sn2,5, - TiAl8Mo1V1	≤1400		
Алюминий и алюминиевые сплавы	3.0255 Al99,5, 3.2315 AlMgSi1, 3.3515 AlMg1	≤400		0
Деформируемые алюмин. сплавы	3.0615 AlMgSiPb, 3.1325 AlCuMg1, 3.3245 AlMg3Si, 3.4365 AlZnMgCu1,5	≤650		0
Лит. алюмин. сплавы ≤ 10% Si	3.2131 G-AlSi5Cu1, 3.2153 G-AlSi7Cu3, 3.2573 G-AlSi9	≤600		
> 10 % Si	3.2581 G-AlSi12, 3.2583 G-AlSi12Cu, - G-AlSi12CuNiMg	≤600		
Магниевые сплавы	3.5200 MgMn2, 3.5812.05 G-MgAl8Zn1, 3.5612.05 G-MgAl6Zn1	≤400		0
Медь, низколегированная	2.0070 SE-Cu, 2.1020 CuSn6, 2.1096 G-CuSn5ZnPb	≤500		Ō
Латунь с короткой стружкой	2.0380 CuZn39Pb2, 2.0401 CuZn39Pb3, 2.0410 CuZn43Pb2	≤600		0
с длинной стружкой	2.0250 CuZn20, 2.0280 CuZn33, 2.0332 CuZn37Pb0,5	≤600		0
Бронза, с короткой стружкой	2.1090 CuSn7ZnPb, 2.1170 CuPb5Sn5, 2.1176 CuPb10Sn	≤600		
F	2.0790 CuNi18Zn19Pb	≤850		
Бронза, с длинной стружкой	2.0916 CuAl5, 2.0960 CuAl9Mn, 2.1050 CuSn10	≤850 <1000		
	2.0980 CuAl11Ni, 2.1247 CuBe2	≤1000		
Пластмассы, термореактивные	Bakélite, Résopal, Pertinax, Moltopren	≤150 -100		00
термопластичные	Plexiglas, Hostalen, Novodur, Macralon	≤100	-000 LID	
Новые чугуны GKV	EN-GJV250 (GGV25), EN-GJV350 (GGV35)		≤220 HB ≤300 HB	88
Horaco maran ADI	EN-GJV400 (GGV40), EN-GJV500 (GGV50), SiMo 6	-1000	≥300 HB	
Новые чугуны ADI	EN-GJS-800-8 (ADI800), EN-GJS-1000-5 (ADI1000)	≤1000 <1400		88
	EN-GJS-1200-2 (ADI1200), EN-GJS-1400-1 (ADI1400)	≤1400		
армированные	Kevlar	≤1000 <1000		\geq
стекло- и углепластики	GFK/CFK	≤1000		
без обработка пар	ом азотирование азотирование золотисто-	TIAIN (a) TIAIN	nanoA A Al	TiN SuperA
Опокрытия Оораоотка пар	ленточек азотирование коричневое	10/4114		Capain

Цековки

200	1201	1202	1205	1200	1200	1204
МОН	нолитна	ая	съемная	М	онолитн	ая
\supset	\bigcirc	\bigcirc				
SS	HSS	HSS	HSS	HSS	HSS	HSS
73	373	373	375	Зав. ст.	Зав. ст.	Зав. ст.
82	483	484	463	485	486	487

324	325	326
373	373	373
HSS	HSS	HSS
S	S	S
М	онолитн	ая
1389	1391	1393

Зенкеры

	•		
432	433	434	435
1862	1862	1862	1862
HSS-E	HSS-E	HSS-E	HSS-E
1399	1400	1401	1402

V _C m/min			K	Код подач	и			v _c m/min	ĸ	Сод подач	и
32	85	85	85	85	85	85	85	35	85	85	8
30	85	85	85	85	85	85	85	33	85	85	8
32 30	85 85	85 85	85 85	85 85	85 85	85 85	85 85	35 33	85 85	85 85	3
30 32	85	85 85	85	85 85	85	85 85	85	35	85	85 85	9
30	85	85	85	85	85	85	85	33	85	85	8
20	84	84	84	84	84	84	84	22	84	84	8
15	84	84	84	84	84	84	84	17	84	84	8
12	84	84	84	84	84	84	84	13	84	84	8
25	85	85	85	85	85	85	85	28	85	85	3
15 10	84 84	84 84	84 84	84 84	84 84	84 84	84 84	17 11	84 84	84 84	5
15	85	85	85	84	85	85	85	17	85	85	8
12	84	84	84	84	84	84	84	13	84	84	8
17	84	84	84	84	84	84	84	19	84	84	8
15	84	84	84	84	84	84	84	17	84	84	8
15	84 84	84	84	84	84	84	84	17	84	84	3
10 16	84	84 84	84 84	84 84	84 84	84 84	84 84	11 18	84 84	84 84	
10 12	84	84	84	84	84	84	84	13	84	84	8
14	84	84	84	84	84	84	84	15	84	84	8
8	84	84	84	84	84	84	84	9	84	84	8
25	85	85	85	85	85	85	85	28	85	85	8
16	84	84	84	84	84	84	84	18	84	84	8
22 20	84 84	84 84	84 84	84 84	84 84	84 84	84 84	24 22	84 84	84 84	8
8	84	84	84	84	84	84	84	9	84	84	8
15	85	85	85	85	85	85	85	17	85	85	8
10	85	85	85	85	85	85	85	11	85	85	8
90	85	85	85	85	85	85	85	99	85	85	8
70	86	86	86	86	86	86	86	77	86	86	8
40 30	85 85	85 85	85 85	85 85	85 85	85 85	85 85	44 33	85 85	85 85	
100	86	86	86	86	86	86	86	110	86	86	8
60	84	84	84	84	84	84	84	66	84	84	8
80	85	85	85	85	85	85	85	88	85	85	8
50	85	85	85	85	85	85	85	55	85	85	8
30	86	86	86	86	86	86	86	33	86	86	3
26 24	86 86	86 86	86 86	86 86	86 86	86 86	86 86	29 26	86 86	86 86	
24 20	86	86	86	86	86	86	86	22	86	86	8
30	84	84	84	84	84	84	84	33	84	84	8
40	85	85	85	85	85	85	85	44	85	85	8
70	84	84	84	84	84	84	84	77	84	84	8
C TiC	N	Cb Carb	00	(D) Crista	all (F FIRE/i	nanoFIRE	P	AICrN	S Ti	N

n	ĺ	Код подач	и	v _c m/min		Код по	дачи	
	85	85	85	30	82	83	83	83
	85	85	85	27	82	82	82	82
	85 85	85 85	85 85	30 27	82 82	83 82	83 82	83 82
	85	85	85	30	82	82	82	82
	85	85	85	27	82	82	82	82
	84	84	84	24	81	82	82	82
	84 84	84 84	84 84	20 15	81 81	82 81	82 81	82 81
	85	85	85	28	82	83	83	83
	84	84	84	18	81	82	82	82
	84	84	84	12	81	81	81	81
	85	85	85	18	81	82	82	82
	84	84	84	15	81	81	81	81
	84 84	84 84	84 84	20 17	81 81	82 81	82 81	82 81
	84	84	84	20	81	81	81	81
	84	84	84	12	81	81	81	81
	84	84	84	12	81	82	82	82
	84	84	84	6	81	81	81	81
	84	84	84	8	81	81	81	81
	84	84	84	8	81	81	81	81
	85	85	85	12	82	82	82	82
	84	84	84	10	81	82	82	82
	84	84	84	10	81	82	82	82
	84 84	84 84	84 84	8 5	81 81	81 81	81 81	81 81
	85	85	85	10	82	83	83	83
	85	85	85	7	82	82	82	82
	85	85	85	100	82	83	83	83
	86	86	86	80	83	84	84	84
	85	85	85	80	82	83	83	83
	85	85	85	70	82	83	83	83
	86	86 84	86 84	75 50	83 81	84	84	84
	84 85	85	85	60	82	82 82	82 82	82 82
	85	85	85	45	82 82	82 82	82 82	82 82
	86	86	86	40	83	84	84	84
	86	86	86	36	83	84	84	84
	86	86	86	35	83	84	84	84
	86	86	86	28	83	84	84	84
	84	84	84	25	81	82	82	82
	85	85	85	32	82	82	82	82
	84	84	84	60	81	82	82	82

S+ TiN+

MolyGlide

Y Signum

Предпочтительно выбирать инструмент, условное обозначение подачи которого выделенно жирным шрифтом.

Для глухих отверстий с точными допусками необходимо выбирать развертки с прямыми канавками.

Для многозубых зенковок в скобках указан диапазон диаметров для соответствующего числа зубьев.

Ha сайте фирмы Guhring www.guhring.ru Вы также найдете электронную версию Guhring-навигатора для выбора оптимального инструмента и рекомендуемых параметров резания.

Артикул № Стандарт/DIN Режущий материал Покрытие Тип Программа на стр.

сож

Тверд.

Пред. прочн. Н/мм²

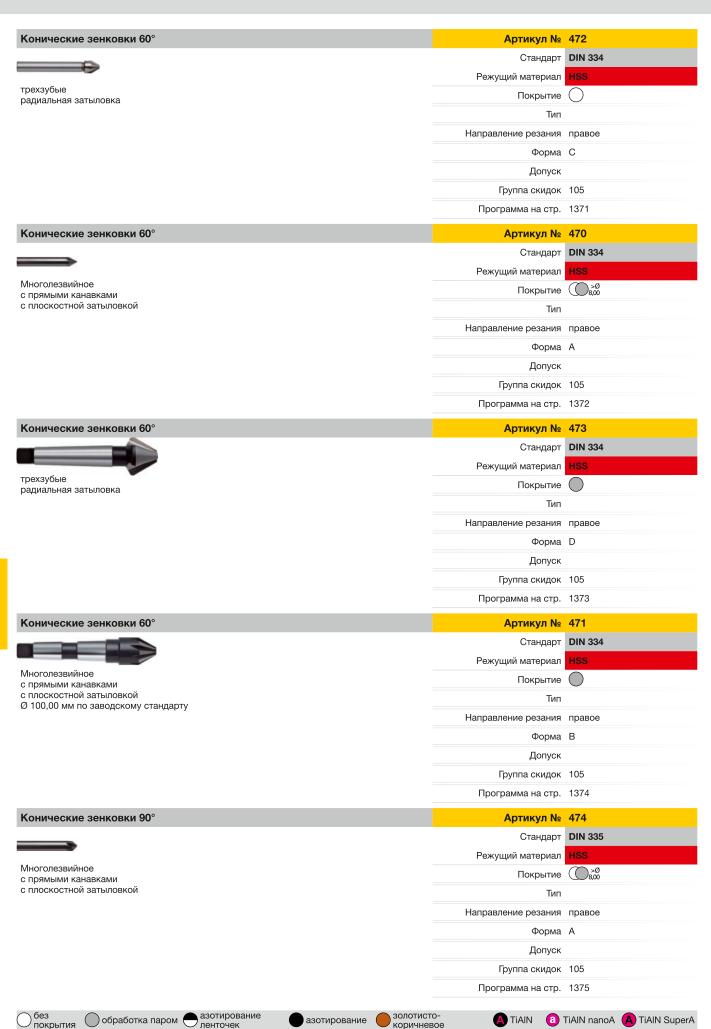
			 Подача (I	№ в табл.)	
Ø инструм.	81	82	83	84	85	86
ВММ			f (MN	и/об)		
2,00	0,03	0,04	0,06	0,08	0,10	0,13
2,50	0,03	0,05	0,07	0,10	0,13	0,16
3,15	0,03	0,05	0,08	0,11	0,15	0,20
4,00	0,04	0,06	0,09	0,13	0,17	0,22
5,00	0,04	0,07	0,10	0,14	0,18	0,23
6,30	0,04	0,07	0,12	0,15	0,19	0,24
8,00	0,05	0,08	0,13	0,16	0,20	0,25
10,00	0,06	0,09	0,14	0,17	0,22	0,26
12,50	0,06	0,10	0,15	0,19	0,23	0,28
16,00	0,07	0,11	0,17	0,21	0,26	0,31
20,00	0,08	0,13	0,18	0,23	0,28	0,33
25,00	0,09	0,15	0,21	0,26	0,30	0,38
31,50	0,12	0,17	0,24	0,30	0,36	0,42
40,00	0,14	0,21	0,28	0,34	0,40	0,46
50,00	0,17	0,24	0,31	0,36	0,42	0,48
63,00	0,20	0,27	0,33	0,38	0,44	0,50
80,00	0,23	0,30	0,35	0,40	0,46	0,52
100,00	0,25	0,30	0,35	0,40	0,46	0,52
-						

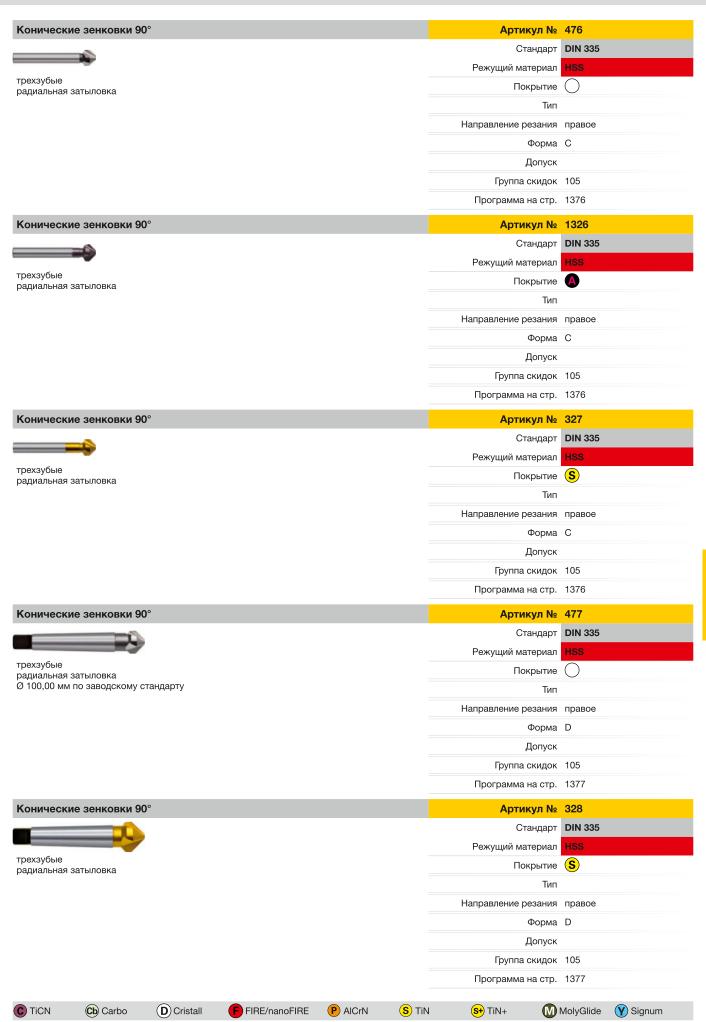
			Тодача (I	 № в табл.)		Охлаждение:
Ø инструм.	81	82	83	84	, 85	86	эмульсия
в мм			f (MN	и/об)			масловоздух
2,00	0,03	0,04	0,06	0,08	0,10	0,13	
2,50	0.03	0,05	0,07	0,10	0,13	0,16	
3,15	0,03	0,05	0,08	0,11	0,15	0,20	
4,00	0.04	0,06	0.09	0,13	0,17	0,22	
5,00	0,04	0,07	0,10	0,14	0,18	0,23	
6,30	0,04	0,07	0,12	0,15	0,19	0,24	
8,00	0,05	0,08	0,13	0,16	0,20	0,25	
10,00	0,06	0,09	0,14	0,17	0,22	0,26	
12,50	0,06	0,10	0,15	0,19	0,23	0,28	
16,00	0,07	0,11	0,17	0,21	0,26	0,31	
20,00	0,08	0,13	0,18	0,23	0,28	0,33	
25,00	0,09	0,15	0,21	0,26	0,30	0,38	
31,50	0,12	0,17	0,24	0,30	0,36	0,42	
40,00	0,14	0,21	0,28	0,34	0,40	0,46	
50,00	0,17	0,24	0,31	0,36	0,42	0,48	
63,00	0,20	0,27	0,33	0,38	0,44	0,50	
80,00	0,23	0,30	0,35	0,40	0,46	0,52	
100,00	0,25	0,30	0,35	0,40	0,46	0,52	
Группа ма	териалов				материал Јрифтом		обозначение по DIN EN
Углеродис	тые сталі	и общего		I.0035 S18	85(St33), 1	I. 0486 P27	75N(StE285), 1.0345 P235G
назначени					. ,,		E360 (St70-2), 1.8937 P500
Автоматны	ые стали	(повышен			•	, .	28), 1.0736 11SMn37 (9SMr
ofpoforus		*				,	(60000) 1 0757 (600b00)

	MUPHBINI EPICPTONI BBIACHENO GOGSHARENNE NO DITA ETA	I I/ IVIIVI		1
Углеродистые стали общего	1.0035 S185(St33), 1.0486 P275N(StE285), 1.0345 P235GH(H1), 1.0425 P265GH(H2)	≤500		
назначения	1.0050 E295 (St50-2), 1.0070 E360 (St70-2), 1.8937 P500NH (WStE500)	≤1000		
Автоматные стали (повышенной	1.0718 11SMnPb30 (9SMnPb28), 1.0736 11SMn37 (9SMn36)	≤850		
обрабатываемости резанием)	1.0727 46S20 (45S20), 1.0728 (60S20), 1.0757 46SPb20 (45SPb20)	≤1000		0
Углеродистые улучшенные стали	1.0402 C22, 1.1178 C30E (Ck30)	≤700		000
	1.0503 C45, 1.1191 C45E (Ck45)	≤850		0
	1.0601 C60, 1.1221 C60E (Ck60)	≤1000		
Легированные улучшенные стали	1.5131 50MnSi4, 1.7003 38Cr2, 1.7030 28Cr4	≤1000		8
	1.5710 36NiCr6, 1.7035 41Cr4, 1.7225 42CrMo4	≤1400		
Углеродистые цементиров. стали	1.0301 (C10), 1.1121 C10E (Ck10)	≤850		
Легированные цементированные	1.7276 10CrMo11, 1.5125 11MnSi6	≤1000		•
стали	1.5752 15NiCr13, 1.7131 16MnCr5, 1.7264 20CrMo5	≤1400		
Азотированные стали	1.8504 34CrAl6	≤1000		
	1.8519 31CrMoV9, 1.8550 34CrAlNi7	≤1400		
Инструментальные стали	1.1750 C75W, 1.2067 102Cr6, 1.2307 29CrMoV9	≤850		
	1.2080 X210Cr12, 1.2083 X42Cr13, 1.2419 105WCr6, 1.2767 X45NiCrMo4	≤1400		
Быстрорежущие стали	1.3243 S 6-5-2-5, 1.3343 S 6-5-2, 1.3344 S 6-5-3	≤1400		
Рессорно-пружинные стали	1.5026 55Si7, 1.7176 55Cr3, 1.8159 51CrV4 (51CrV4)		≤350 HB	
Нерж. стали, с содерж. серы	1.4005 X12CrS13, 1.4104 X14CrMoS17, 1.4105 X6CrMoS17, 1.4305 X8CrNiS18-9	≤900		
аустенитные	1.4301 X5CrNi18-10 (V2A), 1.4541 X6CrNiTi18-10, 1.4571 X6CrNiMoTi 17-12-2 (V4A)	≤1100		
мартенситные	1.4057 X20CrNi172 (X17CrNi16-2), 1.4122 X39CrMo17-1, 1.4521 X2CrMoTi18-2	≤1500		
Закаленные стали	-		≤48 HRC	
			≤66 HRC	Ŏ
Специальные сплавы	Nimonic, Inconel, Monel, Hastelloy	≤2000		
Серый чугун	GL-100 GL-200		≤240 HB	
	GL-250 GL-350		≤350 HB	ŎŎ
Высокопрочный и ковкий чугун	FGS-350-4, FGS-550-4, FGS-500-7		≤240 HB	
, , ,	FGS-700-2, FGS-700-2		≤350 HB	Ŏ
Отбеленный чугун	-		≤350 HB	
Титан и титановые сплавы	3.7024 Ti99,5, 3.7114 TiAl5Sn2,5, 3.7124 TiCu2	≤850		Ŏ
	3.7154 TiAl6Zr5, 3.7165 TiAl6V4, 3.7184 TiAl4Mo4Sn2,5, - TiAl8Mo1V1	≤1400		Ŏ
Алюминий и алюминиевые сплавы	3.0255 Al99,5, 3.2315 AlMqSi1, 3.3515 AlMq1	≤400		
Деформируемые алюмин. сплавы	3.0615 AlMgSiPb, 3.1325 AlCuMg1, 3.3245 AlMg3Si, 3.4365 AlZnMgCu1,5	≤650		
Лит. алюмин. сплавы ≤ 10% Si	3.2131 G-AlSi5Cu1, 3.2153 G-AlSi7Cu3, 3.2573 G-AlSi9	≤600		8
> 10 % Si	3.2581 G-AlSi12, 3.2583 G-AlSi12Cu, - G-AlSi12CuNiMg	≤600		Ŏ
Магниевые сплавы	3.5200 MgMn2, 3.5812.05 G-MgAl8Zn1, 3.5612.05 G-MgAl6Zn1	≤400		Ŏ
Медь, низколегированная	2.0070 SE-Cu, 2.1020 CuSn6, 2.1096 G-CuSn5ZnPb	≤500		Ŏ
Латунь с короткой стружкой	2.0380 CuZn39Pb2, 2.0401 CuZn39Pb3, 2.0410 CuZn43Pb2	≤600		Ŏ
с длинной стружкой	2.0250 CuZn20, 2.0280 CuZn33, 2.0332 CuZn37Pb0,5	≤600		
Бронза, с короткой стружкой	2.1090 CuSn7ZnPb, 2.1170 CuPb5Sn5, 2.1176 CuPb10Sn	≤600		
	2.0790 CuNi18Zn19Pb	≤850		
Бронза, с длинной стружкой	2.0916 CuAl5, 2.0960 CuAl9Mn, 2.1050 CuSn10	≤850		
Бропоа, о длишом отружком	2.0980 CuAl11Ni, 2.1247 CuBe2	≤1000		•
Пластмассы, термореактивные	Bakélite, Résopal, Pertinax, Moltopren	≤150		Ô
термопластичные	Plexiglas, Hostalen, Novodur, Macralon	≤100		00
Новые чугуны GKV	EN-GJV250 (GGV25), EN-GJV350 (GGV35)		≤220 HB	
. 100010 Tyryrior Circy	EN-GJV400 (GGV40), EN-GJV500 (GGV50), SiMo 6		≤300 HB	
Новые чугуны ADI	EN-GJS-800-8 (ADI800), EN-GJS-1000-5 (ADI1000)	≤1000		
. 1005.0 Lyr yribi 7101	EN-GJS-1200-2 (ADI1200), EN-GJS-1400-1 (ADI1400)	≤1400 ≤1400		88
армированные	Kevlar	≤1000		
· · · ·	GFK/CFK	≤1000		\sim
стекло- и углепластики	азотирование азотирование золотисто-	31000		

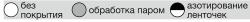
COLII (CDE)	
1601	1602
Зав. ст.	Зав. ст.
HSS	HSS
KS 125	KS 140
1406	1407

1603	1604
Зав. ст.	Зав. ст.
Твердый сплав	Тверлый сплав
твордын опиав	твордый оплав
	О
KS 108	KS 115

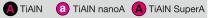


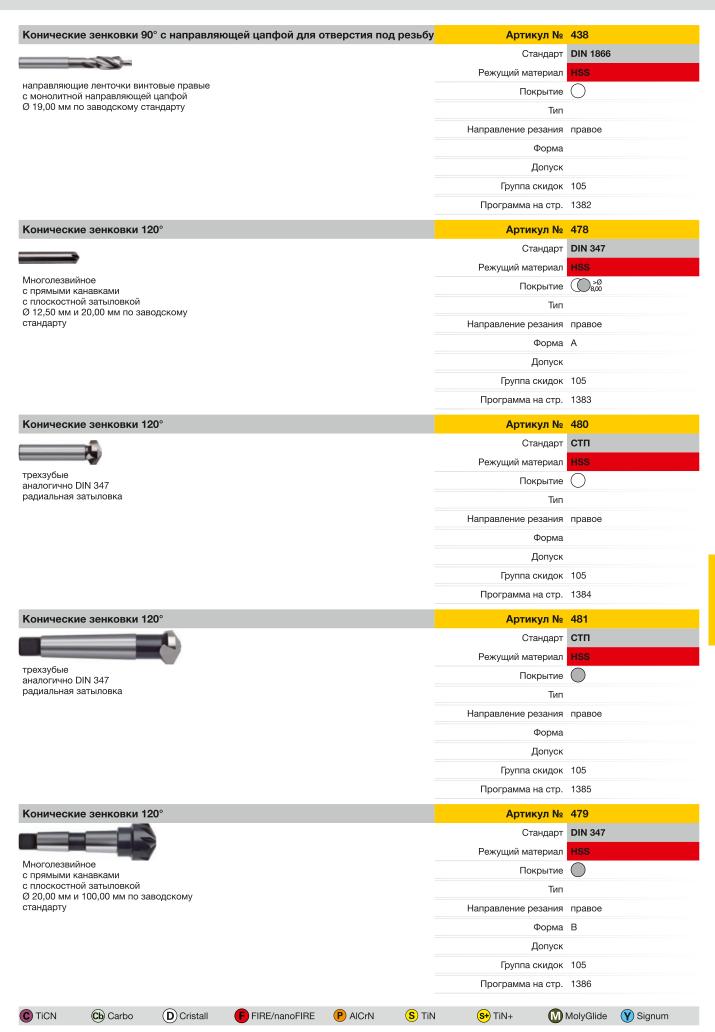


No. No.	Код подачи 85 85 85 85 85
27	85 85 85
30 82 82 45 83 82 48 83 30 27 82 82 35 82 82 82 37 82 27 30 82 82 45 82 82 48 82 30 27 82 82 40 82 82 42 82 22 24 481 81 30 82 82 32 82 22 24 20 81 81 30 82 82 32 82 24 20 81 81 30 82 82 32 82 20 15 81 81 30 82 82 32 81 11 15 28 82 82 82 37 82 18 11 15 81 81 35 82 82 37 82 18 11	85 85
27 82 82 35 82 82 37 82 27 30 82 82 45 82 82 48 82 30 27 82 82 40 82 82 42 82 27 24 81 81 30 82 82 32 82 24 20 81 81 30 82 82 32 82 20 15 81 81 30 82 82 32 82 20 15 81 81 35 82 82 37 82 82 18 18 81 81 35 82 82 37 82 18 11 12 18 18 81 81 35 82 82 37 82 18 11 12 18 11 12 18 11 12 81	85
30 82 82 45 82 82 46 82 82 42 82 27 24 81 81 30 82 82 32 82 24 20 81 81 30 82 82 32 82 20 15 81 81 22 81 81 23 81 15 28 82 82 50 83 82 82 37 82 18 18 81 81 35 82 82 37 82 18 12 81 81 35 82 82 37 82 18 12 81 81 20 81 81 21 81 12 18 81 20 81 81 21 81 15 20 81 81 35 81 81 31 37 81	85 85
27 82 82 40 82 82 42 82 27 24 81 81 30 82 82 32 82 24 20 81 81 30 82 82 32 82 24 20 81 81 30 82 82 32 82 20 15 81 81 30 82 82 32 81 15 28 82 82 50 83 82 53 83 28 18 81 81 35 82 82 37 82 18 12 81 81 20 81 81 21 81 11 12 18 81 81 20 81 81 31 37 81 15 18 15 81 81 17 81 15 81 81 31 37	85
24 81 81 30 82 82 32 82 24 20 81 81 30 82 82 32 82 20 15 81 81 81 22 81 81 23 81 15 28 82 82 50 83 82 53 83 28 18 81 81 35 82 82 37 82 18 12 81 81 20 81 81 21 81 12 81 12 81 12 18 12 18 12 18 12 18 12 18 12 18 12 18 11 12 18 18 12 18 11 12 18 15 24 282 37 82 18 15 24 82 82 42 82 20 17 18 18	
20 81 81 30 82 82 32 82 20 15 81 81 22 81 81 23 81 75 28 82 82 50 83 82 53 83 28 18 81 81 35 82 82 37 82 18 18 81 81 31 35 82 82 37 82 18 18 81 81 31 35 82 82 37 82 18 15 81 81 20 81 81 21 81 15 20 81 81 40 82 82 42 82 20 17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 17	85
15 81 81 22 81 81 23 81 15 28 82 82 50 83 82 53 83 28 18 81 81 81 35 82 82 37 82 18 12 81 81 20 81 81 21 81 12 18 81 81 20 81 81 21 81 15 15 81 81 20 81 81 21 81 15 20 81 81 40 82 82 42 82 20 17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 17 21 81 81 35 81 81 37 81 12 22	84
28 82 82 50 83 82 53 83 28 18 81 81 35 82 82 37 82 18 12 81 81 20 81 81 21 81 12 18 81 81 35 82 82 37 82 18 15 81 81 20 81 81 21 81 15 81 81 40 82 82 82 42 82 20 17 81 81 35 81 81 37 81 17 7 81 82 20 20 17 81 81 35 81 81 37 81 17 7 81 82 20 20 12 81 81 37 82 82 39 82 12 12 81 81 81 81	84
28 82 82 50 83 82 53 83 28 18 81 81 35 82 82 37 82 18 12 81 81 20 81 81 21 81 12 18 81 81 35 82 82 37 82 18 15 81 81 20 81 81 21 81 15 20 81 81 40 82 82 42 82 20 17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 20 12 81 81 37 82 82 39 82 12 2 81 81 37 82 82 39 82 12 2 81 81 81 81 81 81 81	84
18 81 81 35 82 82 37 82 18 12 81 81 20 81 81 21 81 12 18 81 81 35 82 82 37 82 18 15 81 81 20 81 81 21 81 15 20 81 81 40 82 82 42 82 20 17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 17 12 81 81 35 81 81 37 81 17 12 81 81 35 81 81 27 81 12 12 81 81 37 82 82 39 82 12 12 81 81 37 82 82 39 82 12 12 81 81 81 81 81 81 81	85
18 81 81 35 82 82 37 82 18 15 81 81 20 81 81 21 81 81 15 20 81 81 40 82 82 42 82 20 17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 20 12 81 81 25 81 81 27 81 12 20 12 81 81 37 82 82 39 82 12 12 6 81 81 33 81 81 35 81 8 81 81 81 81 81 81 81 81 81 81	84
18 81 81 35 82 82 37 82 18 15 81 81 20 81 81 21 81 81 15 20 81 81 40 82 82 42 82 20 17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 20 12 81 81 25 81 81 27 81 12 20 12 81 81 37 82 82 39 82 12 12 6 81 81 33 81 81 35 81 8 81 81 81 81 81 81 81 81 81 81	84
15 81 81 20 81 81 21 81 15 20 81 81 40 82 82 42 82 20 17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 20 12 81 81 25 81 81 27 81 12 12 81 81 37 82 82 39 82 12 6 81 81 37 82 82 39 82 12 6 81 81 33 81 81 35 81 8 8 81 81 33 81 81 35 81 8 8 81 81 40 83 82 42 83 10 10 81 <td< td=""><td>84</td></td<>	84
20 81 81 40 82 82 42 82 20 17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 20 12 81 81 25 81 81 27 81 12 81 81 37 82 82 39 82 12 12 82 82 39 82 12 12 83 81 81 81 6 83 82 39 82 12 12 83 81 81 12 82 82 39 82 12 12 83 83 83 81 6 83 83 83 83 83 83 83 83 83 83 84 12 83 84 12 83 84 12 83 10 84 83 53 83 83 10 84 83 83 10 84 <	84
17 81 81 35 81 81 37 81 17 20 81 81 35 81 81 37 81 20 12 81 81 25 81 81 27 81 12 81 81 37 82 82 39 82 12 6 81 81 33 81 81 35 81 6 8 81 81 35 81 82 37 81 8 8 81 81 16 81 81 17 81 8 8 81 81 40 83 53 84 12 10 81 81 40 83 82 42 83 10 10 81 81 40 82 82 42 83 10 10 81 81 40 82 82 42 83 10 10 81 81 40 82 82 42 82 8 5 81 81 20 81 81 21 81 5 10 </td <td>84</td>	84
20 81 81 35 81 81 37 81 20 12 81 81 25 81 81 27 81 12 12 81 81 37 82 82 39 82 12 6 81 81 33 81 81 35 81 6 8 81 81 35 81 82 37 81 8 8 81 81 16 81 81 17 81 8 8 81 81 40 83 53 84 12 8 81 81 40 83 82 42 83 10 81 81 40 83 82 53 83 10 8 81 81 40 83 82 53 83 10 80 81 81 40 82 82 42 83 10 8 81 81 40 <t< td=""><td>84</td></t<>	84
12 81 81 25 81 81 27 81 12 12 81 81 37 82 82 39 82 12 6 81 81 33 81 81 35 81 6 8 81 81 35 81 82 37 81 8 8 81 81 16 81 81 17 81 8 8 81 81 40 83 53 84 12 10 81 81 40 83 82 42 83 10 10 81 81 40 82 82 53 83 10 8 81 81 40 82 82 42 83 10 10 81 81 40 82 82 42 82 8 5 81 81 20 81 81 21 81 5 10 82 82 82 81 81 21 83 10 7 82 82 82 81 16 82 7 100 <td>84</td>	84
12 81 81 37 82 82 39 82 12 6 81 81 33 81 81 35 81 6 8 81 81 35 81 82 37 81 8 8 81 81 16 81 81 17 81 8 12 82 82 50 84 83 53 84 12 10 81 81 40 83 82 42 83 10 10 81 81 50 83 82 53 83 10 10 81 81 40 82 82 42 82 82 5 81 81 40 82 82 42 82 8 5 81 81 20 81 81 21 81 5 10 82 82 20 83 81 21 83 10 7 82 82 82 81 16 82 7 100 82 82 82 81 16 82 7 100 <td>84</td>	84
6 81 81 33 81 81 35 81 6 8 81 81 35 81 82 37 81 8 8 81 81 16 81 81 17 81 8 12 82 82 50 84 83 53 84 12 10 81 81 40 83 82 42 83 10 10 81 81 50 83 82 53 83 10 10 81 81 40 82 82 42 82 82 82 82 83 10 9 83 83 10 9 82 82 82 82 82 82 82 82 83 10 83 10 83 10 83 10 83 10 83 10 83 10 83 10 83 10 83 10 83 10 83 10 83 10 8	84
8 81 81 35 81 82 37 81 8 8 81 81 81 81 81 8 12 82 82 50 84 83 53 84 12 10 81 81 40 83 82 42 83 10 10 81 81 50 83 82 53 83 10 8 81 81 40 82 82 42 82 82 8 5 81 81 20 81 81 21 81 5 10 82 82 20 83 81 21 83 10 7 82 82 15 82 81 16 82 7 100 82 82 80 83 84 84 84 83 100 80 83 83 84 84 84 84 84 80 80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 7	84
8 81 81 16 81 81 17 81 8 12 82 82 50 84 83 53 84 12 10 81 81 40 83 82 42 83 10 10 81 81 50 83 82 53 83 10 8 81 81 40 82 82 42 82 82 8 5 81 81 20 81 81 21 81 5 10 82 82 20 83 81 21 83 10 7 82 82 15 82 81 16 82 7 100 82 82 82 81 16 82 7 100 82 82 83 84 84 84 84 80 83 83 80 84 84 84 84 84 80 82 82 60 83 84 84 84 84 80 82 82 60 83 84 63 83 80	84
12 82 82 50 84 83 53 84 12 10 81 81 40 83 82 42 83 10 10 81 81 50 83 82 53 83 10 8 81 81 40 82 82 42 82 82 82 82 82 82 82 82 82 82 82 81 81 5 81 81 21 81 5 5 81 81 21 83 10 82 82 82 83 81 21 83 10 83 10 83 10 82 82 7 82 82 80 83 84 84 84 83 100 83 84 84 84 84 84 84 80 83 83 80 84 84 84 84 84	04
12 82 82 50 84 83 53 84 12 10 81 81 40 83 82 42 83 10 10 81 81 50 83 82 53 83 10 8 81 81 40 82 82 42 82 82 82 82 82 82 82 82 82 82 82 81 81 5 81 81 5 81 81 5 81 81 5 82 82 82 82 82 82 82 82 83 10 83 10 83 10 82 82 7 82 82 80 83 84 84 84 83 100 83 84 84 84 84 84 84 84 84 84 84 84 84 84 84 86	
10 81 81 40 83 82 42 83 10 10 81 81 81 50 83 82 53 83 10 8 81 81 40 82 82 42 82 8 5 81 81 20 81 81 21 81 5 10 82 82 20 83 81 21 83 10 7 82 82 15 82 81 16 82 7 100 82 82 80 83 84 84 83 100 80 83 83 84 84 84 84 80 80 82 82 60 83 84 84 84 80 80 82 82 60 83 84 63 83 80 70 82 <	84
10 81 81 50 83 82 53 83 10 8 81 81 40 82 82 42 82 8 5 81 81 20 81 81 21 81 5 10 82 82 20 83 81 21 83 10 7 82 82 15 82 81 16 82 7 100 82 82 80 83 84 84 84 83 100 80 83 83 80 84 84 84 84 80 80 80 82 82 60 83 84 84 84 84 80 80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 70 <td>85</td>	85
8 81 81 40 82 82 42 82 8 5 81 81 20 81 81 21 81 5 10 82 82 20 83 81 21 83 10 7 82 82 15 82 81 16 82 7 100 82 82 80 83 84 84 83 100 80 83 83 80 84 84 84 84 84 80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 70	84
5 81 81 20 81 81 21 81 5 10 82 82 20 83 81 21 83 10 7 82 82 15 82 81 16 82 7 100 82 82 80 83 84 84 84 83 100 80 83 83 80 84 84 84 84 84 80 80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 70	84
10 82 82 20 83 81 21 83 10 7 82 82 15 82 81 16 82 7 100 82 82 80 83 84 84 83 100 80 83 83 84 84 84 84 80 80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 70	84
7 82 82 15 82 81 16 82 7 100 82 82 80 83 84 84 83 100 80 83 83 80 84 84 84 84 80 80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 70	84
100 82 82 80 83 84 84 83 100 80 83 83 80 84 84 84 84 80 80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 70	85
80 83 83 80 84 84 84 84 80 80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 70	85
80 82 82 60 83 84 63 83 80 70 82 82 45 83 83 48 83 70	85
70 82 82 45 83 83 48 83 70	86
	85
75 92 92 90 94 94 94 94 75	85
	86
50 81 81 80 82 82 84 82 50	84
60 82 82 50 82 83 53 82 60	85
45 82 82 40 82 84 42 82 45	85
40 83 83 35 84 82 37 84 40	86
36 83 83 30 84 82 32 84 36	86
35 <mark>83 83 25 84 82 27 84 35</mark>	86
28 83 83 22 84 81 23 84 28	86
25 81 81 50 82 83 53 82 25	84
32 82 82 80 82 84 84 82 32	85
60 81 81 50 82 83 53 82 60	84
TICN 🕲 Carbo 🛈 Cristall \digamma FIRE/nanoFIRE 🕑 AlCrN 💲 TIN 🙌 TiN+ 🚺 MolyGlid	e Y Signum

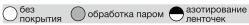


Конические зенковки 90°		Артикул №	
		Стандарт	
Многолезвийное		Режущий материал	
с прямыми канавками с плоскостной затыловкой	Покрытие		
Ø 100,00 мм по заводскому стандарту		Тип	
		Направление резания	
		Форма	
		Допуск	
	Группа скидок	105	
	Программа на стр.	1378	
Наборы конических зенковок 90°		Артикул №	498
		Стандарт	DIN 335
		Режущий материал	HSS
рехзубые радиальная затыловка	Комплект в кассете, состоит из арт№ 476,	Покрытие	\bigcirc
real street out by to breath	номин. Ø:	Тип	
	6,30 мм 8,30 мм	Направление резания	правое
	10,40 мм 12,40 мм	Форма	
	16,50 мм 20,50 мм	Допуск	
	20,30 MM	Группа скидок	
		Программа на стр.	
Наборы конических зенковок 90°		Артикул №	
		Стандарт	
радиальная затыловка	Комплект в кассете,	Режущий материал	
рехзубые	состоит из арт№ 327,	Покрытие	S
	НоминØ: 6,30 мм	Тип	
	8,30 мм 10,40 мм	Направление резания	правое
	12,40 мм 16,50 мм	Форма	С
	16,50 мм 20,50 мм	Допуск	
		Группа скидок	105
		Программа на стр.	1379
Конические зенковки 90° с направля	ющей цапфой точного исполнения	Артикул №	436
		Стандарт	DIN 1866
		Режущий материал	HSS
аправляющие ленточки винтовые правые монолитной направляющей цапфой		Покрытие	\bigcirc
ў 19,00 мм по заводскому стандарту		Тип	
		Направление резания	правое
		Форма	
		Допуск	
		Группа скидок	
		Программа на стр.	
∖онические зенковки 90° с направля	ющей цапфой среднего исполнения	Артикул №	
			DIN 1866
направляющие ленточки винтовые правые		Режущий материал	
жонолитной направляющей цапфой		Покрытие	0
ž 21,50 мм по заводскому стандарту		Тип	
		Направление резания	правое
		Форма	
		Допуск	
		Группа скидок	105
		Программа на стр.	1381

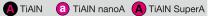


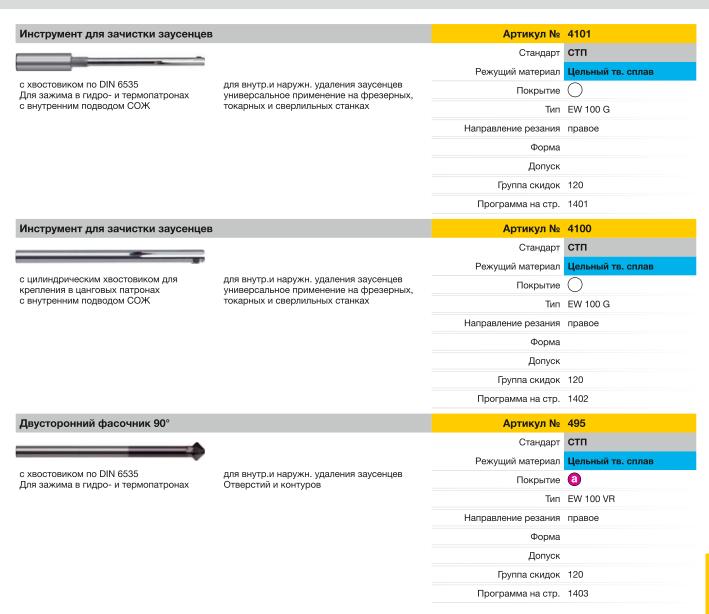


Цековки с направляющей цапфой точного исполнения	Артикул №	482
	Стандарт	
	Режущий материал	HSS
направляющие ленточки винтовые правые с монолитной направляющей цапфой	Покрытие	\bigcirc
	Тип	
	Направление резания	правое
	Форма	
	Допуск	
	Группа скидок	105
	Программа на стр.	1387
Цековки с направляющей цапфой точного исполнения	Артикул №	324
	Стандарт	DIN 373
	Режущий материал	HSS
аправляющие ленточки винтовые правые ∶монолитной направляющей цапфой	Покрытие	S
	Тип	
	Направление резания	правое
	Форма	
	Допуск	
	Группа скидок	105
	Программа на стр.	1387
Ч ековки с направляющей цапфой точного исполнения	Артикул №	485
	Стандарт	стп
	Режущий материал	HSS
аправляющие ленточки винтовые правые Для сквозного точного отверстия согласно монолитной направляющей цапфой DIN ISO 273	Покрытие	
	Тип	
	Направление резания	правое
	Форма	
	Допуск	
	Группа скидок	105
	Программа на стр.	1388
Д ековки с направляющей цапфой среднего исполнения	Артикул №	483
	Стандарт	DIN 373
	Режущий материал	HSS
аправляющие ленточки винтовые правые для обработки по DIN 974, часть 1 монолитной направляющей цапфой	Покрытие	\bigcirc
	Тип	
	Направление резания	правое
	Форма	
	Допуск	
	Группа скидок	105
	Программа на стр.	1389
цековки с направляющей цапфой среднего исполнения	Артикул №	325
	Стандарт	
	Режущий материал	HSS
аправляющие ленточки винтовые правые для обработки по DIN 974, часть 1 монолитной направляющей цапфой	Покрытие	S
	Тип	
	Направление резания	правое
	Форма	
	Допуск	
	Группа скидок	105
	_	1000
	Программа на стр.	1369

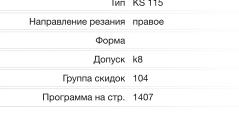

Цековки с	направляющ	цей цапфой ср	еднего исполнения			Артикул №	486	
_		d _e				Стандарт	СТП	
						Режущий материал	HSS	
	ие ленточки винтовые правые й направляющей цапфой	для обработки по DIN ! Для сквозного точного		CHO -	Покрытие			
MOHOMMHIO	Паправляюще	и цапфои	DIN ISO 273	CHO	Тип			
						Направление резания	правое	
						Форма		
						Допуск		
						Группа скидок		
						Программа на стр.		
					_			
ековки с	направляющ	цей цапфой дл	я отверстия под рез	ьбу		Артикул №	484	
						Стандарт	DIN 373	
						Режущий материал	HSS	
	ие ленточки вин і направляюще					Покрытие	\bigcirc	
						Тип		
						Направление резания	правое	
						Форма		
						Допуск		
						Группа скидок	105	
						Программа на стр.		
					_	· · · · · ·		
ековки с	направляющ	цей цапфой дл	я отверстия под рез	ьбу		Артикул №		
	101					Стандарт		
anonna an	AO DOUTOUKA DIAL	ITORI IO EROPE IO	для обработки по DIN :	274 112071 1		Режущий материал		
направляющие ленточки винтовые правые с монолитной направляющей цапфой			для обработки по Бім :	974, 4ac16 1		Покрытие	S	
					Тип			
				Направление резания	правое			
						Форма		
						Допуск		
						Группа скидок	105	
						Программа на стр.	1391	
				. 6.,	_	American No	407	
ековки с	направляющ	цеи цапфои дл	я отверстия под рез	ьоу		Артикул №		
						Стандарт		
аправляющи	ие ленточки вин	TORNE DARNE	Для отверстия под рез	ьбу согласно DIN	336	Режущий материал		
	і направляюще		исполнение 1	Boy confidence Bire	=	Покрытие	\bigcirc	
						Тип		
						Направление резания	правое	
						Форма		
						Допуск		
						Группа скидок	105	
						Программа на стр.	1392	
OKOBKI CO	CMOULLING	направляющи	ми папфами			Артикул №	463	
CROBKII CC	, SIMERINDIMIN F	паправляющи	ии цапфами			Артикул № Стандарт		
	-							
аправляющі	ие ленточки вин	нтовые правые	для обработки по DIN :	974, часть 1		Режущий материал		
,	- · = •••	1	Через сменные направ Исполнение точное Ар	ляющие цапфы:		Покрытие		
			Исполнение среднее А	рт№ 465		Тип		
			Исполн. для отв. под р	езьбу Арт№ 466		Направление резания	правое	
						Форма		
						Допуск		
						Группа скидок	105	
						Программа на стр.	1393	
			_					
TiCN	Cb Carbo	(D) Cristall	FIRE/nanoFIRE	P AICrN	S TiN	S+) TiN+	MolyGlide	Y Signum

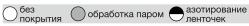
Цековки	Артикул №	432
	Стандарт	DIN 1862
	Режущий материал	HSS-E
направляющие ленточки винтовые правые Внутренняякрепежная резьба М6 по DIN 228,	Покрытие	0
часть 1 форма А	Тип	
	Направление резания	правое
	Форма	
	Допуск	
	Группа скидок	105
	Программа на стр.	1397
Цековки	Артикул №	433
	Стандарт	
	Режущий материал	
направляющие ленточки винтовые правые	Покрытие	
Внутрення крепежная резьба M10 по DIN 228, часть 1 форма A	Тип	
	Направление резания	правое
	Форма	
	Допуск	
	Группа скидок	105
	Программа на стр.	1398
	Программа на стр.	
Цековки	Артикул №	434
Цековки	Артикул № Стандарт	434 DIN 1862
Цековки направляющие ленточки винтовые правые	Артикул № Стандарт Режущий материал	434 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN	Артикул № Стандарт Режущий материал Покрытие	434 DIN 1862 HSS-E
направляющие ленточки винтовые правые	Артикул № Стандарт Режущий материал Покрытие Тип	434 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания	434 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма	434 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма	434 DIN 1862 HSS-E Правое
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск	434 DIN 1862 HSS-E Правое
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN 228, часть 1 форма A	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок	434 DIN 1862 HSS-E правое 105 1399
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр.	434 DIN 1862 HSS-E Правое 105 1399 435
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN 228, часть 1 форма A	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт	434 DIN 1862 HSS-E Правое 105 1399 435 DIN 1862
направляющие ленточки винтовые правые Внутренняя крепежная резьба М12 по DIN 228, часть 1 форма А	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт Режущий материал	434 DIN 1862 HSS-E Правое 105 1399 435 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба М12 по DIN 228, часть 1 форма А Цековки направляющие ленточки винтовые правые Внутренняя крепежная резьба М16 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт	434 DIN 1862 HSS-E Правое 105 1399 435 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба M12 по DIN 228, часть 1 форма A Цековки направляющие ленточки винтовые правые	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт Режущий материал	434 DIN 1862 HSS-E Правое 105 1399 435 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба М12 по DIN 228, часть 1 форма А Цековки направляющие ленточки винтовые правые Внутренняя крепежная резьба М16 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт Режущий материал	434 DIN 1862 HSS-E Правое 105 1399 435 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба М12 по DIN 228, часть 1 форма А Цековки направляющие ленточки винтовые правые Внутренняя крепежная резьба М16 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт Режущий материал Покрытие Тип	434 DIN 1862 HSS-E Правое 105 1399 435 DIN 1862 HSS-E
направляющие ленточки винтовые правые Внутренняя крепежная резьба М12 по DIN 228, часть 1 форма А Цековки направляющие ленточки винтовые правые Внутренняя крепежная резьба М16 по DIN	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт Режущий материал Покрытие Тип Направление резания	434 DIN 1862 HSS-E Правое 105 1399 435 DIN 1862 HSS-E



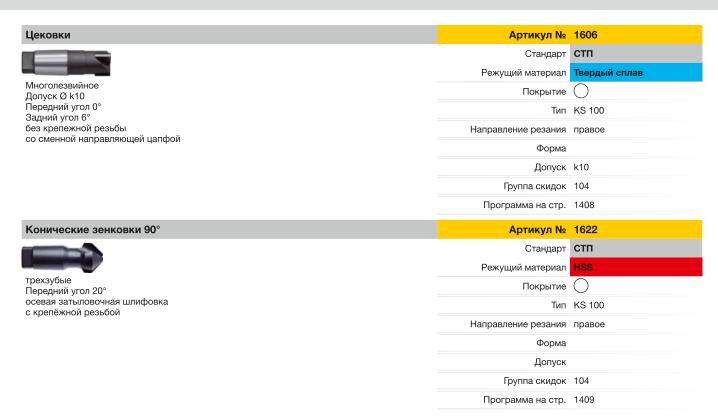

Группа скидок 105 Программа на стр. 1400

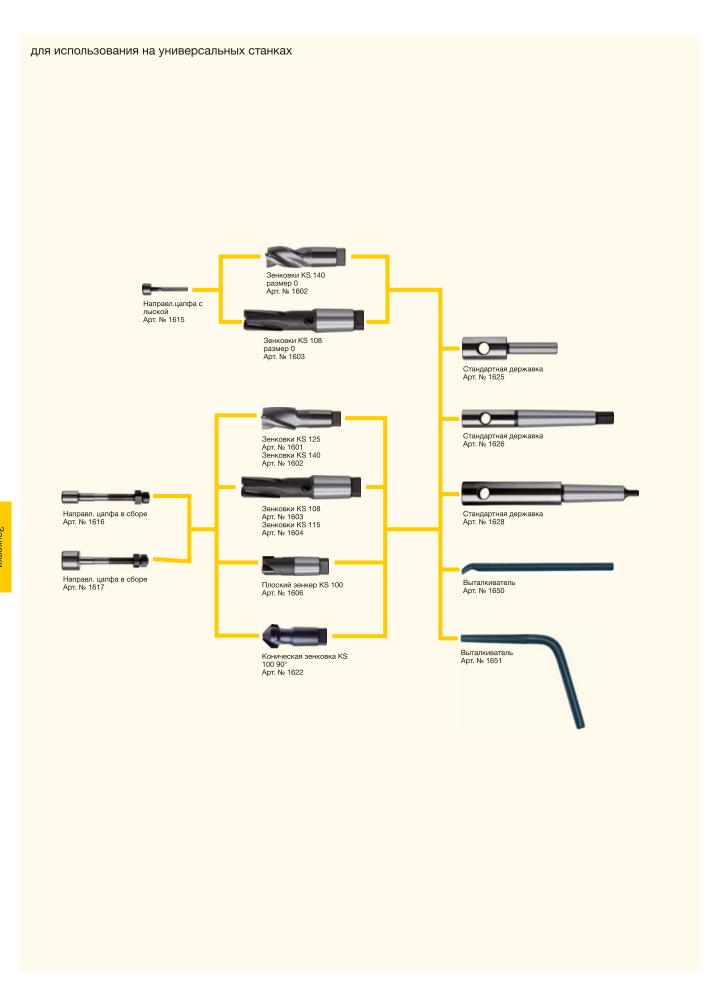
Инструменты для удаления заусенцев

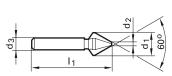




Насадные зенкеры	Артикул №	1601
	Стандарт	стп
	Режущий материал	HSS
Многолезвийное Допуск Ø k8	Покрытие	0
Передний угол 18° Задний угол 6°	Тип	KS 125
с крепёжной резьбой	Направление резания	правое
со сменной направляющей цапфой	Форма	
	Допуск	k8
	Группа скидок	104
	Программа на стр.	1404
Насадные зенкеры	Артикул №	1602
	Стандарт	стп
	Режущий материал	HSS
Многолезвийное Допуск ∅ k8	Покрытие	
Передний угол: ≤ Ø 8,5 мм 25°, > Ø 8,5 мм 30° Задний угол 6°	Тип	KS 140
с крепежной резьбой с размером конуса со сменной направляющей цапфой	Направление резания	правое
со сметной паправилющей цапфой	Форма	
	Допуск	k8
	Группа скидок	104
	По село се се село	
	Программа на стр.	1405
Насадные зенкеры	Программа на стр. Артикул №	
Насадные зенкеры		1603
	Артикул №	<mark>1603</mark> стп
трехзубые Допуск Ø k8	Артикул № Стандарт	<mark>1603</mark> стп
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6°	Артикул № Стандарт Режущий материал Покрытие	<mark>1603</mark> стп
трехзубые Допуск \emptyset k8 Передний угол: $\leq \emptyset$ 13 мм 8°, $> \emptyset$ 13 мм 12° Задний угол 6° $\leq \emptyset$ 8,5 мм без крепежной резьбы	Артикул № Стандарт Режущий материал Покрытие	1603 СТП Твердый сплав () KS 108
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6°	Артикул № Стандарт Режущий материал Покрытие Тип	1603 СТП Твердый сплав () KS 108
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания	1603 СТП Твердый сплав
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск	1603 СТП Твердый сплав
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск	1603 СТП Твердый сплав
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск	1603 СТП Твердый сплав
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой со сменной направляющей цапфой	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок	1603 СТП Твердый сплав КS 108 правое k8 104 1406
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой со сменной направляющей цапфой	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр.	1603 СТП Твердый сплав
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой со сменной направляющей цапфой	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт	1603 СТП Твердый сплав
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой со сменной направляющей цапфой Насадные зенкеры трехзубые Допуск Ø k8 Передний угол 15° Задний угол 6°	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт Режущий материал	1603 СТП Твердый сплав
трехзубые Допуск Ø k8 Передний угол: ≤ Ø 13 мм 8°, > Ø 13 мм 12° Задний угол 6° ≤ Ø 8,5 мм без крепежной резьбы > Ø 8,5 мм с крепежной резьбой со сменной направляющей цапфой Насадные зенкеры трехзубые Допуск Ø k8 Передний угол 15°	Артикул № Стандарт Режущий материал Покрытие Тип Направление резания Форма Допуск Группа скидок Программа на стр. Артикул № Стандарт Режущий материал	1603 СТП Твердый сплав КS 108 правое К8 104 1406 1604 СТП Твердый сплав КS 115

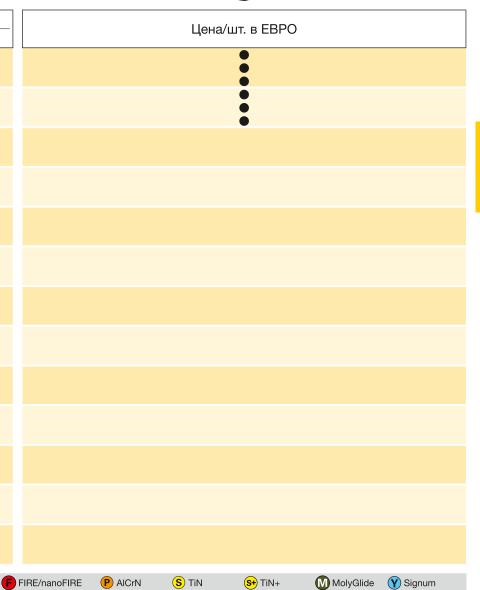


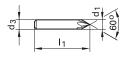


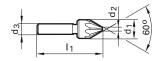


Система насадных зенкеров без фиксации в оправке

Артикул №	472
Стандарт	DIN 334
Режущий материал	HSS
Покрытие	\bigcirc
Форма	С
Группа скидок	105
Техническая информация на стр.	1360

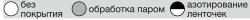



d1	d3	11	d2	Z
ММ	мм	мм	мм	
6,300	5,000	45,00	1,600	3
8,000	6,000	50,00	2,000	3
12,500	8,000	56,00	3,200	3
16,000	10,000	63,00	4,000	3
20,000	10,000	67,00	5,000	3
25,000	10,000	71,00	6,300	3


© Carbo

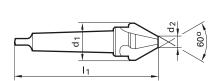
(D) Cristall

Артикул №	470
Стандарт	DIN 334
Режущий материал	HSS
Покрытие	\$\overline{\pi}_{\text{8,00}}\cdot \text{\$\sigma}
Форма	Α
Группа скидок	105
Техническая информация на стр.	1360

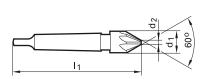

d1	d3	I1	d2	Z
ММ	ММ	мм	ММ	
8,000	8,000	50,00		5
12,500	8,000	50,00	2,000	5
16,000	10,000	60,00	3,200	7
20,000	10,000	63,00	5,000	7

Цена/шт. в EBPO	
•	

без покрытия обработка паром азотирован	азотирование	золотисто-коричневое	A TIAIN	TiAIN nanoA	A TiAIN SuperA



473
DIN 334
HSS
D
105
1360


3
3
3
3
3
3
3
3

© Carbo

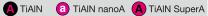
(D) Cristall

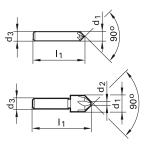
		Ценал	/шт. в ЕВРО		
			•		
IRE/nanoFIRE	P AICrN	S TiN	S+ TiN+	MolyGlide	Y Signum

Артикул №	471
Стандарт	DIN 334
Режущий материал	HSS
Покрытие	
Форма	В
Группа скидок	105
Техническая информация на стр.	1360

d1	MK	l1	d2	Z
мм		ММ	мм	
16,000	1	100,00	3,200	7
25,000	2	125,00	7,000	9
31,500	2	132,00	9,000	9
40,000	3	160,00	12,000	11
50,000	3	170,00	16,000	13
100,000	4	224,00	31,500	17

Цена/шт. в EBPO
•





Артикул №	474
Стандарт	DIN 335
Режущий материал	HSS
Покрытие	○ \$0 8,00
Форма	A
Группа скидок	105
Техническая информация на стр.	1360

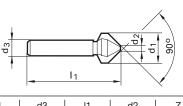
© Carbo

(D) Cristall

FIRE/nanoFIRE

d1	d3	l1	d2	Z	Цена/шт. в EBPO
ММ	ММ	ММ	мм		ценали. в сы о
8,000	8,000	48,00		5	
12,500 16,000	8,000 10,000	48,00 56,00	2,000 3,200	5 7	
20,000	10,000	60,00	5,000	7	
20,000	10,000	00,00	0,000	,	•

P AlCrN


S TiN

MolyGlide

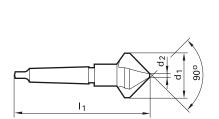
S+ TiN+

Y Signum

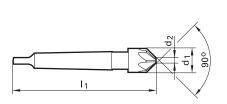
Артикул №	476	1326	327
Стандарт	DIN 335	DIN 335	DIN 335
Режущий материал	HSS	HSS	HSS
Покрытие	\bigcirc	A	S
Форма	С	С	С
Группа скидок	105	105	105
Техническая информация на стр	1361	1361	1361

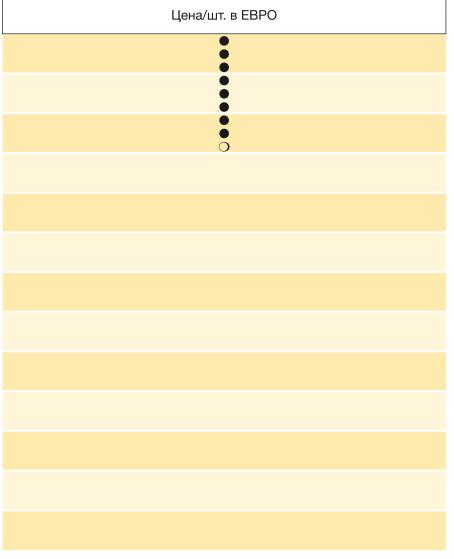


d1	d3	1	d2	Z	Цена/шт. в ЕВРО	Цена/шт. в ЕВРО	Цена/шт. в ЕВРО
MM	4.000	MM	1 000			•	
4,300 5,000	4,000 4,000	40,00 40,00	1,300 1,500	3 3			
5,300	4,000	40,00	1,500	3		9	•
5,800	5,000	45,00	1,500	3		O	
6,000	5,000	45,00	1,500	3	•	•	
6,300	5,000	45,00	1,500	3	•	•	•
7,000	6,000	50,00	1,800	3		Ö	
7,300	6,000	50,00	1,800	3			
8,000	6,000	50,00	2,000	3	•	•	•
8,300	6,000	50,00	2,000	3	•	•	•
9,400	6,000	50,00	2,200	3	•		•
10,000	6,000	50,00	2,500	3	•	•	•
10,400	6,000	50,00	2,500	3	•	•	•
11,500	8,000	56,00	2,800	3	•	Q	•
12,400	8,000	56,00	2,800	3	•	•	•
13,400	8,000	56,00	2,900	3	•	O	•
15,000	10,000	60,00	3,200	3		•	•
16,500	10,000	60,00	3,200	3			•
19,000 20,500	10,000 10,000	63,00 63,00	3,500 3,500	3 3			
23,000	10,000	67,00	3,800	3			•
25,000	10,000	67,00	3,800	3			•
26,000	10,000	67,00	3,800	3			•
28,000	12,000	71,00	4,000	3		Ŏ	
30,000	12,000	71,00	4,200	3		•	•
31,000	12,000	71,00	4,200	3	•	•	•



Артикул №	477	328
Стандарт	DIN 335	DIN 335
Режущий материал	HSS	HSS
Покрытие	\bigcirc	S
Форма	D	D
Группа скидок	105	105
Техническая информация на стр.	1361	1361

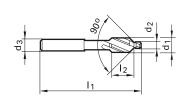



d1	MK	l1	d2	Z	11	ена/шт. в ЕЕ	2PA	1	Цена/шт. в E	RDO.
мм		ММ	ММ			ена/шт. в сс	SFO .	L	цена/шт. в с	БРО
15,000	1	85,00	3,200	3		•				
16,500	1	85,00	3,200	3						
19,000	2	100,00	3,500	3		0				
20,500	2	100,00	3,500	3						
23,000	2	106,00	3,800	3						
25,000	2	106,00	3,800	3						
26,000	2	106,00	3,800	3		0				
28,000	2	112,00	4,000	3						
30,000	2	112,00	4,200	3						
31,000	2	112,00	4,200	3					•	
34,000	2	118,00	4,500	3						
37,000	2	118,00	4,800	3						
40,000	3	140,00	10,000	3		•				
50,000	3	150,00	14,000	3						
63,000	4	180,00	16,000	3						
80,000	4	190,00	22,000	3		•				
100,000	4	200,00	28,000	3		•				
C TICN	СР	Carbo	(D) Crist	all (F	FIRE/nanoFIRE	P AICrN	S TiN	S+ TiN+	MolyGlide	✓ Signum

Артикул №	475
Стандарт	DIN 335
Режущий материал	HSS
Покрытие	
Форма	В
Группа скидок	105
Техническая информация на стр.	1362

d1	MK	11	d2	Z
ММ		мм	мм	
16,000	1	95,00	3,200	7
20,000	2	106,00	5,000	7
25,000	2	118,00	7,000	9
31,500	2	122,00	9,000	9
40,000	3	150,00	12,000	11
50,000	3	155,00	16,000	13
63,000	4	185,00	20,000	15
80,000	4	196,00	25,000	17
100,000	4	212,00	31,500	17

Артикул №	498	499
Стандарт	DIN 3	35
Режущий материал	HSS	S
Покрытие	\bigcirc	S
Форма	С	С
Группа скидок	105	105
Техническая информация на стр.	1362	1362

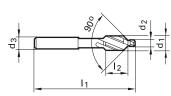


d1 мм	шт./комплект	Код № 			Цена/шт	. в ЕВРО		
6,30-20,50	6,00	7,000		•			•	
C TiCN	©b Carbo	(D) Cristall	FIRE/nanoFIRE	P AICrN	S TiN	S+ TiN+	MolyGlide	Y Signum

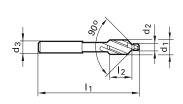
Конические зенковки 90° с направляющей цапфой точного исполнения

Артикул №	436
Стандарт	DIN 1866
Режущий материал	HSS
Покрытие	
Форма	
Группа скидок	105
Техническая информация на стр.	1362

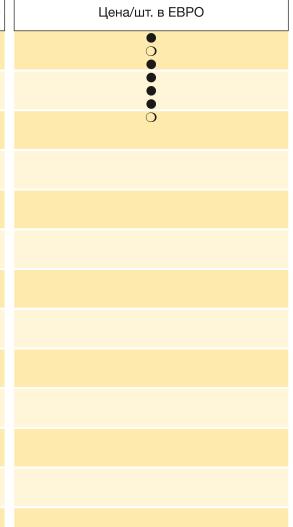
d1	d2	d3	11	12	Z	резьбы	Have/www.p.EDDO
ММ	ММ	ММ	ММ	мм			Цена/шт. в ЕВРО
2,000	1,100	2,000	45,00	7,00	2	M 1	O
2,500	1,300	2,500	45,00	7,00	2	M 1,2	O
2,800	1,500	2,800	45,00	7,00	2	M 1,4	O
3,300	1,700	3,300	56,00	10,00	2	M 1,6	O
3,800	2,000	3,800	56,00	10,00	2	M 1,8	O
4,300	2,200	4,300	56,00	10,00	2	M 2	•
5,000	2,700	5,000	56,00	10,00	2	M 2,5	
6,000	3,200	5,000	71,00	14,00	3	M 3	
8,000	4,300	5,000	71,00	14,00	3	M 4	
10,000	5,300	8,000	80,00	18,00	3	M 5	
11,500	6,400	8,000	80,00	18,00	3	M 6	
15,000	8,400	12,500	100,00	22,00	3	M 8	
19,000	10,500	12,500	100,00	22,00	3	M10	О



Конические зенковки 90° с направляющей цапфой среднего исполнения

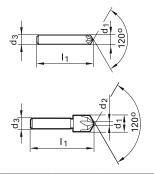


		-		-			Ш
d1	d2	d3	l I1	12	Z	резьбы	– Цена/шт. в ЕВРО
MM	ММ	мм	ММ	мм			Hone En B EBI O
6,600	3,400	5,000	71,00	14,00	3	М 3	•
7,600	3,900	5,000	71,00	14,00	3	M 3,5	O
9,000	4,500	8,000	80,00	18,00	3	M 4	
11,000 13,000	5,500 6,600	8,000 12,500	80,00 100,00	18,00 22,00	3 3	M 5 M 6	
17,200	9,000	12,500	100,00	22,00	3	M 8	
21,500	11,000	12,500	100,00	22,00	3	M10	
,,,,,	,	,	,	,			
C TICN	(Cb) Carbo	D C	ristall F	FIRE/nanoFI	RE (P) A	AICrN	S TiN S+ TiN+ MolyGlide Y Signum
	Carbo				/		- In the signal of the signal


Конические зенковки 90° с направляющей цапфой для отверстия под резьбу

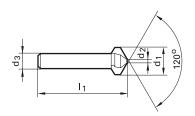
438	Артикул №
DIN 1866	Стандарт
HSS	Режущий материал
\bigcirc	Покрытие
	Форма
105	Группа скидок
1363	Техническая информация на стр.

d1	d2	d3	11	12	Z	резьбы
ММ	ММ	ММ	ММ	ММ		
6,000	2,500	5,000	71,00	14,00	3	M 3
7,000	2,900	5,000	71,00	14,00	3	M 3,5
8,000	3,300	5,000	71,00	14,00	3	M 4
10,000	4,200	8,000	80,00	18,00	3	M 5
11,500	5,000	8,000	80,00	18,00	3	M 6
15,000	6,800	12,500	100,00	22,00	3	M 8
19,000	8,500	12,500	100,00	22,00	3	M10



Артикул №	478
Стандарт	DIN 347
Режущий материал	HSS
Покрытие	>Ø 8,00
Форма	Α
Группа скидок	105
Техническая информация на стр.	1363

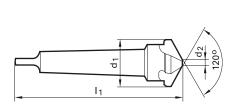
d1	d3	11	d2	Z
ММ	мм	мм	мм	
8,000	8,000	42,00	2,000	5
12,500	8,000	42,00	2,000	5
16,000	10,000	53,00	3,200	7
20,000	10,000	56,00	5,000	7


C TICN

© Carbo

(D) Cristall

Артикул №	480
Стандарт	стп
Режущий материал	HSS
Покрытие	
Форма	
Группа скидок	105
Техническая информация на стр.	1363


d1	d3	l1	d2	Z	Цена/шт. в EBPO
		им	мм		цена/шт. в ЕВРО
16,000 1	0,000 53	3,00	4,000	3	•

золотисто-коричневое

азотирование

A TIAIN (a) TIAIN nanoA (A) TIAIN SuperA

без обработка паром азотирование ленточек

d1	MK	11	d2	Z	
ММ		ММ	ММ		
25,000	2	112,00	6,300	3	
40,000	3	140,00	12,500	3	

C TICN

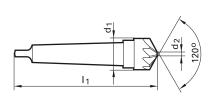
© Carbo

(D) Cristall

FIRE/nanoFIRE

P AlCrN

S TiN



S+ TiN+

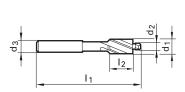
MolyGlide MolyGlide

Y Signum

Артикул №	479
Стандарт	DIN 347
Режущий материал	HSS
Покрытие	
Форма	В
Группа скидок	105
Техническая информация на стр.	1363
Форма Группа скидок	105

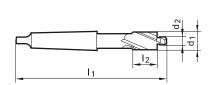
d1	d1 MK		d2	Z
мм		мм	ММ	
25,000	2	112,00	7,000	9
40,000	3	140,00	12,000	11
63,000	4	170,00	20,000	15
100,000	4	200,00	31,500	17

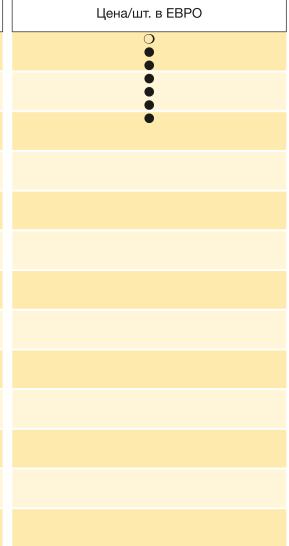
Цена/шт. в EBPO
O O O
Ο

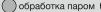


Цековки с направляющей цапфой точного исполнения

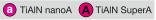
Артикул №	482	324
Стандарт	DIN 373	DIN 373
Режущий материал	HSS	HSS
Покрытие	\bigcirc	S
Форма		
Группа скидок	105	105
Техническая информация на стр.	1364	1364

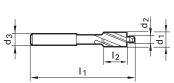



d1	d2	d3	11	12	Z	резьбы	1 🗔	Цена/шт. в ЕВРО Цена		шт. в ЕВРО
ММ	ММ	ММ	ММ	ММ			'	дена/шт. в съгс	у цена/	ші. в свро
2,200	1,100	2,200	45,00	7,00	2	M 1		О		
2,500	1,300	2,500	45,00	7,00	2	M 1,2		0		
3,800	1,800	3,800	56,00	10,00	2	M 1,7		0		
4,300	2,200	4,300	56,00	10,00	2	M 2				
5,500	2,800	5,000	71,00	14,00	3	M 2,6				
6,000	3,200	5,000	71,00	14,00	3	М 3				
6,500	3,700	5,000	71,00	14,00	3	M 3,5		0		
8,000	4,300	5,000	71,00	14,00	3	M 4				
10,000	5,300	8,000	80,00	18,00	3	M 5				
11,000	6,400	8,000	80,00	18,00	3	M 6				
15,000	8,400	12,500	100,00	22,00	3	M 8				
18,000	10,500	12,500	100,00	22,00	3	M10				
20,000	13,000	12,500	100,00	22,00	3	M12				
T:ON		(B) =			. .	410 N	T '	€ TNI	1 1 0 1 1	Q
C TICN	(Cb) Carbo	D) Cı	ristall	FIRE/nanoFIF	ie 🕑 ,	AICrN 🧐	TiN	S+ TiN+	MolyGlide	Y Signum


Артикул №	485
Стандарт	стп
Режущий материал	HSS
Покрытие	
Форма	
Группа скидок	105
Техническая информация на стр.	1364

d1	d2	MK	11	12	Z	резьбы
ММ	ММ		ММ	ММ		
18,000	10,500	2	150,00	25,00	3	M10
20,000	13,000	2	150,00	25,00	3	M12
24,000	15,000	2	162,00	30,00	3	M14
26,000	17,000	3	192,00	35,00	3	M16
30,000	19,000	3	192,00	35,00	3	M18
33,000	21,000	3	204,00	40,00	3	M 20
40,000	25,000	3	204,00	40,00	3	M 24





Цековки с направляющей цапфой среднего исполнения

80,00

100,00

100,00

100,00

d2

ММ

3,400

4,500

5,500

6,600

9,000

11,000

13,500

8,000

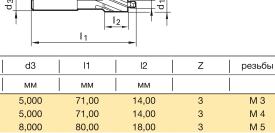
12,500

12,500

12,500

6,000

8,000


10,000

11,000

15,000

18,000

20,000

18,00

22,00

22,00

22,00

3

3

3

3

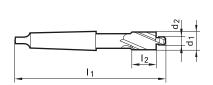
M 6

M 8

M10

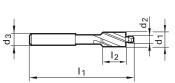
M12

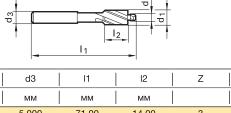
Цена/шт. в ЕВРО	Цена/шт. в EBPO
•	
•	



486
т
л
e
a
к 105
o. 1365

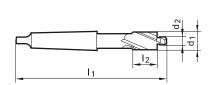
d1	d2	MK	l1	12	Z	резьбы
ММ	ММ		ММ	ММ		
18,000	11,000	2	150,00	25,00	3	M10
20,000	13,500	2	150,00	25,00	3	M12
24,000	15,500	2	162,00	30,00	3	M14
26,000	17,500	3	192,00	35,00	3	M16
33,000	22,000	3	204,00	40,00	3	M 20
40,000	26,000	3	204,00	40,00	3	M 24



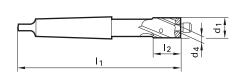


Цековки с направляющей цапфой для отверстия под резьбу

Артикул №	484	326
Стандарт	DIN 373	DIN 373
Режущий материал	HSS	HSS
Покрытие		S
Форма		
Группа скидок	105	105
Техническая информация на стр.	1365	1365



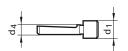
u	l uz	l us	"	12		резвові	- Цена/шт. в ЕВРО Цена/		′шт. в ЕВРО	
ММ	мм	ММ	ММ	мм			4	та/шт. в сого	у ценал	
6,000	2,500	5,000	71,00	14,00	3	M 3		•		•
8,000	3,300	5,000	71,00	14,00	3	M 4		•		
10,000	4,200	8,000	80,00	18,00	3	M 5		•		О
11,000	5,000	8,000	80,00	18,00	3	M 6		•		0
15,000	6,800	12,500	100,00	22,00	3	M 8		•		_
18,000	8,500	12,500	100,00	22,00	3	M10		•		0
20,000	10,200	12,500	100,00	22,00	3	M12		•		
C TICN	© Carbo	D Cr	ristall (F	FIRE/nanoFII	RE P	ICrN (TiN	S+ TiN+	MolyGlide	Y Signum


Артикул №	487
Стандарт	стп
Режущий материал	HSS
Покрытие	
Форма	
Группа скидок	105
Техническая информация на стр.	1365

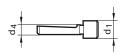
d1	d2	MK	11	12	Z	резьбы
ММ	ММ		ММ	ММ		
20,000	10,200	2	150,00	25,00	3	M12
24,000	12,000	2	162,00	30,00	3	M14
26,000	14,000	3	192,00	35,00	3	M16

Цена/шт. в ЕВРО
O O

d1	MK	d4 H8	11	12	Z
ММ		ММ	ММ	мм	
15,000	2	4,000	132,00	22,00	3
18,000	2	5,000	140,00	25,00	3
20,000	2	5,000	140,00	25,00	3
24,000	2	6,000	150,00	30,00	3
26,000	3	8,000	180,00	35,00	3
30,000	3	8,000	180,00	35,00	3
33,000	3	10,000	190,00	40,00	3
63,000	4	16,000	250,00	63,00	4

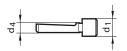


Артикул №	464
Стандарт	DIN 1868
Группа скидок	105
Техническая информация на стр.	



d1	d4	G	для	Код №	Цена/шт. в ЕВРО
мм	мм		ММ		цена/шт. в съго
8,400	4,000	M8	15,0	8,404	О
8,400	5,000	M8	18,0/20,0	8,405	O O
10,500	5,000	M10	18,0/20,0	10,505	O
10,500	6,000	M10	24,0	10,506	O O
13,000	5,000	M12	20,0	13,005	Ο
13,000	6,000	M12	24,0	13,006	Ö
13,000	8,000	M12	26,0	13,008	Ο
15,000	6,000	M14	24,0	15,006	O
15,000	8,000	M14	26,0/30,0	15,008	
17,000	8,000	M16	26,0/30,0	17,008	O
17,000	10,000	M16	33,0	17,010	O
19,000	8,000	M18	30,0	19,008	Ō
19,000	10,000	M18	33,0/36,0	19,010	O O
21,000	10,000	M20	33,0/36,0/40,0	21,010	O
23,000	10,000	M22	36,0/40,0	23,010	Ö
23,000	12,000	M22	43,0	23,012	O
25,000	10,000	M24	40,0	25,010	O O O
25,000	12,000	M24	43,0/46,0	25,012	Ο
без		бработка г	паром азотиро	вание	азотирование золотисто- корминовор А ТіАІN (a) TiAIN nanoA (A) TiAIN SuperA
О без покры	тия 🔾 о	opaooika i	ленточе	K	коричневое ТАПА ТАПА ТАПА Зирега

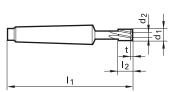
Артикул №	465
Стандарт	DIN 1868
Группа скидок	105
Техническая информация на стр.	



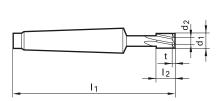
d1	d4	G	для	Код №	House/www.p.EDDO
ММ	мм		ММ		Цена/шт. в ЕВРО
9,000	4,000	M8	15,0	9,004	O
9,000	5,000	M8	18,0/20,0	9,005	O
11,000	5,000	M10	18,0/20,0	11,005	O
11,000	6,000	M10	24,0	11,006	O
13,500	5,000	M12	20,0	13,505	Ο
13,500	6,000	M12	24,0	13,506	O
13,500	8,000	M12	26,0	13,508	\circ
15,500	6,000	M14	24,0	15,506	Ō
15,500	8,000	M14	26,0/30,0	15,508	O
17,500	8,000	M16	26,0/30,0	17,508	\circ
17,500	10,000	M16	33,0	17,510	Ō
20,000	8,000	M18	30,0	20,008	O
20,000	10,000	M18	33,0/36,0	20,010	\circ
22,000	10,000	M20	33,0/36,0/40,0	22,010	Ö
24,000	10,000	M22	36,0/40,0	24,010	Ō
24,000	12,000	M22	43,0	24,012	O
26,000	10,000	M24	40,0	26,010	Ō
26,000	12,000	M24	43,0/46,0	26,012	О
30,000	12,000	M27	43,0/46,0	30,012	Ο
30,000	16,000	M27	53,0	30,016	Ö
33,000	12,000	M30	48,0	33,012	O
33,000	16,000	M30	53,0/61,0	33,016	O
36,000	16,000	M33	53,0/57,0	36,016	O
39,000	16,000	M36	57,0/61,0	39,016	Ο
C TICN	Ср	Carbo	D Cristall	FIRE/na	noFIRE P AICrN S TiN S+ TiN+ M MolyGlide Y Signum

Цапфы направляющие для цековок, зенкование отверстия под резьбу

Артикул №	466
Стандарт	DIN 1868
Группа скидок	105
Техническая информация на стр.	

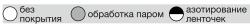


d1	d4	G	для	Код №	Цена/шт. в ЕВРО
ММ	ММ		ММ		цона шт. в Евт о
6,800	4,000	M8	15,0	6,804	О
6,800	5,000	M8	18,0/20,0	6,805	Ο
8,500	5,000	M10	18,0/20,0	8,505	Ο
8,500	6,000	M10	24,0	8,506	Ο
10,200	5,000	M12	20,0	10,205	Ο
10,200	6,000	M12	24,0	10,206	Ο
10,200	8,000	M12	26,0	10,208	Ο
12,000	6,000	M14	24,0	12,006	Ο
12,000	8,000	M14	26,0/30,0	12,008	Ο
14,000	8,000	M16	26,0/30,0	14,008	O
14,000	10,000	M16	30,0	14,010	Ο
15,500	8,000	M18	30,0	15,508	Ο
15,500	10,000	M18	33,0/36,0	15,510	O
17,500	10,000	M20	33,0/36,0/40,0	17,510	O
19,500	10,000	M22	36,0/40,0	19,510	O
19,500	12,000	M22	43,0	19,512	O
21,000	10,000	M24	40,0	21,010	O
21,000	12,000	M24	43,0/46,0	21,012	O
24,000	12,000	M27	43,0/46,0	24,012	0
24,000	16,000	M27	53,0	24,016	O
26,500	12,000	M30	48,0	26,512	0
26,500	16,000	M30	53,0/61,0	26,516	0
29,500	16,000	M33	53,0/57,0	29,516	0
32,000	16,000	M36	57,0/61,0	32,016	0
			_		
О без покры	тия Ос	бработка	паром — азотиро	вание к	азотирование золотисто- коричневое A TiAIN a TiAIN nanoA A TiAIN SuperA
- попры			2 7.5.110 10		2 100% 110000

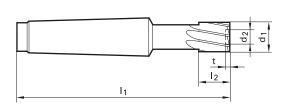

Артикул №	432
Стандарт	DIN 1862
Режущий материал	HSS-E
Покрытие	
Форма	
Допуск	
Группа скидок	105
Техническая информация на стр.	1366

		-	-				
d1	MK	d2	11	l2	t	Z	Цена/шт. в ЕВРО
ММ		ММ	мм	MM	ММ		цена/шт. в сы о
3,500	1		80,00	5,00		4	О
4,500	1		80,00	5,00		4	O O
5,500	1			8,00		4	O
11,000	1	5,000		16,00	1,50	6	Ō
13,000	1	5,000	95,00	16,00	1,50	6	О
C TICN	(Cb) Carbo	(D) Cristall	F FIRE/nanoF	IRF (P AICrN	S TiN	S+ TiN+ MolyGlide Y Signum
11011	000	D Oriotali	- I II L/ Harlor		, 110111	<u> </u>	William Olgitam

Артикул №	433
Стандарт	DIN 1862
Режущий материал	HSS-E
Покрытие	
Форма	
Допуск	
Группа скидок	105
Техническая информация на стр.	1366



d1	MK	d2	11	12	t	Z
ММ		ММ	мм	ММ	мм	
6,000	2		112,00	10,00		6
8,000	2		112,00	10,00		6
10,000	2	5,000	112,00	16,00	1,50	6
12,000	2	5,000	112,00	16,00	1,50	6
13,000	2	5,000	112,00	16,00	1,50	6
14,000	2	6,000	125,00	20,00	2,00	6
15,000	2	6,000	125,00	20,00	2,00	6
16,000	2	8,000	125,00	20,00	2,00	8
18,000	2	10,000	125,00	20,00	2,00	8
23,000	2	12,000	125,00	25,00	3,00	8
25,000	2	12,000	125,00	25,00	3,00	8
27,000	2	15,000	125,00	25,00	3,50	8
28,000	2	15,000	125,00	25,00	3,50	8
29,000	2	15,000	125,00	25,00	3,50	8
30,000	2	15,000	125,00	25,00	3,50	8



Артикул №	434
Стандарт	DIN 1862
Режущий материал	HSS-E
Покрытие	
Форма	
Допуск	
Группа скидок	105
Техническая информация на стр.	1366

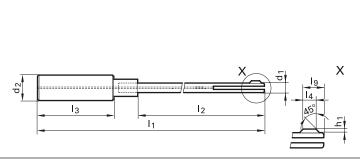
d1	MK	d2	11	12	t	Z	Цена/шт. в EBPO
мм		ММ	ММ	мм	ММ		цена/шт. в съго
10,000	3	5,000	125,00	16,00	1,50	6	O
11,000	3	5,000	125,00	16,00	1,50	6	О
13,000	3	5,000	125,00	16,00	1,50	6	O
14,000	3	6,000	135,00	20,00	2,00	6	O
18,000	3	10,000	135,00	20,00	2,00	8	O
20,000	3	12,000	145,00	25,00	3,00	8	O
22,000	3	12,000	145,00	25,00	3,00	8	О
23,000	3	12,000	145,00	25,00	3,00	8	О
25,000	3	12,000	145,00	25,00	3,00	8	O
27,000	3	15,000	145,00	25,00	3,50	8	О
28,000	3	15,000	145,00	25,00	3,50	8	Ō
29,000	3	15,000	145,00	25,00	3,50	8	O
30,000	3	15,000	145,00	25,00	3,50	8	Ō
C TiCN	©b Carbo	(D) Cristall	F FIRE/na	ınoFIRE	P AICrN	S TiN	S→ TiN+ MolyGlide Signum

11

12

d2

d1	MK	d2	l1	12	t	Z	Цена/шт. в ЕВРО
ММ		ММ	мм	ММ	ММ		цена/шт. в свго
20,000	4	12,000	175,00	25,00	3,00	8	O
21,000	4	12,000	175,00	25,00	3,00	8	O
22,000	4	12,000	175,00	25,00	3,00	8	0
23,000	4	12,000	175,00	25,00	3,00	8	О
24,000	4	12,000	175,00	25,00	3,00	8	O
25,000	4	12,000	175,00	25,00	3,00	8	O
26,000	4	15,000	175,00	25,00	3,50	8	Ο
27,000	4	15,000	175,00	25,00	3,50	8	O
28,000	4	15,000	175,00	25,00	3,50	8	O
29,000	4	15,000	175,00	25,00	3,50	8	O
30,000	4	15,000	175,00	25,00	3,50	8	O
31,000	4	15,000	175,00	25,00	3,50	8	O
33,000	4	16,000	195,00	32,00	3,50	10	O
34,000	4	16,000	195,00	32,00	3,50	10	O
35,000	4	16,000	195,00	32,00	3,50	10	O
37,000	4	18,000	195,00	32,00	4,00	10	O
38,000	4	18,000	195,00	32,00	4,00	10	O
39,000	4	18,000	195,00	32,00	4,00	10	0
41,000	4	20,000	210,00	40,00	4,00	10	0
43,000	4	20,000	210,00	40,00	4,00	10	0
44,000	4	20,000	210,00	40,00	4,00	10	0
45,000	4	22,000	210,00	40,00	4,50	10	0
46,000	4	22,000	210,00	40,00	4,50	10	0
47,000	4	22,000	210,00	40,00	4,50	10	0
48,000	4	22,000	210,00	40,00	4,50	10	O

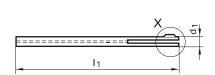


d1

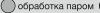
MK

Hомин.Ø	d1	Диапазон Ø	d2	11	12	13	14	19	h1
ММ	мм	ММ	мм	мм	ММ	ММ	мм	ММ	ММ
2,000	1,900	1,91 - 2,15	6,000	120,00	69,00	36,00	1,00	2,05	0,35
2,250	2,100	2,16 - 2,40	6,000	120,00	69,00	36,00	1,50	2,60	0,40
2,500	2,400	2,41 - 2,70	6,000	120,00	69,00	36,00	1,50	2,90	0,40
2,750	2,600	2,71 - 2,90	6,000	130,00	79,00	36,00	1,50	2,95	0,45
3,000	2,900	2,91 - 3,25	6,000	130,00	79,00	36,00	2,00	3,65	0,45
3,500	3,200	3,26 - 3,60	10,000	135,00	80,00	40,00	2,00	3,80	0,60
4,000	3,600	3,61 - 4,25	10,000	135,00	80,00	40,00	2,00	4,10	0,70
4,500	4,200	4,26 - 4,75	10,000	135,00	80,00	40,00	2,50	4,60	0,70
5,000	4,700	4,76 - 5,30	10,000	145,00	80,00	40,00	2,50	4,85	0,75
5,500	5,200	5,31 - 5,80	10,000	145,00	90,00	40,00	2,50	4,85	0,75
6,000	5,600	5,81 - 6,20	10,000	155,00	90,00	40,00	3,00	5,80	0,80
6,500	6,000	6,21 - 6,70	16,000	165,00	102,00	48,00	3,00	5,90	0,90
7,000	6,500	6,71 - 7,10	16,000	165,00	102,00	48,00	3,00	5,85	0,85
7,500	6,900	7,11 - 7,60	16,000	165,00	102,00	48,00	3,50	6,95	0,95
8,000	7,300	7,61 - 8,05	16,000	165,00	102,00	48,00	3,50	7,00	1,00

Цена/шт. в ЕВРО
•
•

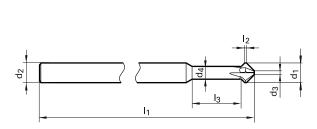


Артикул №	4100
Стандарт	стп
Режущий материал	Цельный тв. сплав
Группа применения тв.сплава	К
Покрытие	\bigcirc
Тип	EW 100 G
Группа скидок	120
Техническая информация на стр.	1367

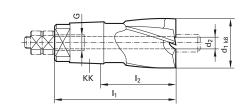


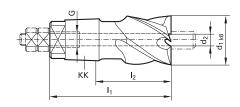
Номин.Ø	d1	Диапазон Ø	11	14	19	h1
ММ	ММ	ММ	ММ	ММ	ММ	мм
2,000	1,900	1,91 - 2,15	80,00	1,00	2,05	0,35
2,250	2,100	2,16 - 2,40	80,00	1,50	2,60	0,40
2,500	2,400	2,41 - 2,70	80,00	1,50	2,90	0,40
2,750	2,600	2,71 - 2,90	90,00	1,50	2,95	0,45
3,000	2,900	2,91 - 3,25	90,00	2,00	3,65	0,45
3,500	3,200	3,26 - 3,60	90,00	2,00	3,80	0,60
4,000	3,600	3,61 - 4,25	90,00	2,00	4,10	0,70
4,500	4,200	4,26 - 4,75	90,00	2,50	4,60	0,70
5,000	4,700	4,76 - 5,30	100,00	2,50	4,85	0,75
5,500	5,200	5,31 - 5,80	100,00	2,50	4,85	0,75
6,000	5,600	5,81 - 6,20	110,00	3,00	5,80	0,80
6,500	6,000	6,21 - 6,70	110,00	3,00	5,90	0,90
7,000	6,500	6,71 - 7,10	110,00	3,00	5,85	0,85
7,500	6,900	7,11 - 7,60	110,00	3,50	6,95	0,95
8,000	7,300	7,61 - 8,05	110,00	3,50	7,00	1,00

Цена/шт. в EBPO
•
))

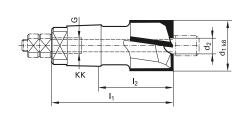


d1 h8	d2 h6	d3	d4	l1	12	13
ММ	ММ	ММ	ММ	ММ	ММ	мм
3,000	4,000	0,600	2,200	75,00	0,50	9,40
4,000	4,000	0,800	2,900	75,00	0,50	12,40
5,000	5,000	1,000	3,900	75,00	0,50	15,00
6,000	6,000	1,200	3,900	100,00	0,50	14,30
8,000	6,000	1,600		100,00	0,50	59,00
10,000	6,000	2,000		100,00	0,50	53,00
12,000	6,000	2,400		100,00	0,50	46,00

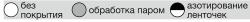



Артикул №	1601
Стандарт	стп
Режущий материал	HSS
Покрытие	\bigcirc
Тип	KS 125
Допуск	
Группа скидок	104
Техническая информация на стр.	1368

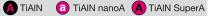
d1	d2	G	KK	11	12	Z	House/www.p.EDDO
ММ	мм			ММ	ММ		Цена/шт. в EBPO
12,000	3,000	M 4	1	40,00	25,00	3	O
12,500	3,000		1	40,00	25,00	3	Ō
14,000	4,000	M 5	2	48,00	30,00	3	O
14,500	4,000	M 5	2	48,00	30,00	3	O
15,000	4,000	M 5	2	48,00	30,00	3	O
16,000	4,000	M 5	2	48,00	30,00	3	O
18,000	5,000	M 6	3	56,00	34,00	4	О
20,000	5,000	M 6	3	56,00	34,00	4	0
21,000	5,000	M 6	3	56,00	34,00	4	O
23,000	6,000	M 8	4	61,00	38,00	4	O
25,000	6,000	M 8	4	61,00	37,00	4	Ο
26,000	6,000	M 8	4	61,00	38,00	4	O
28,000	6,000	M 8	4	61,00	38,00	4	Ο
30,000	6,000	M 8	4	61,00	38,00	4	O
52,000	9,000	M12	5 1/2	68,00	39,00	4	O
53,000	9,000	M12	5 1/2	68,00	39,00	4	O
55,000	9,000	M12	5 1/2	68,00	39,00	4	Ō
57,000	9,000	M12	5 1/2	68,00	39,00	4	О
О без покрытия	я Обраб	отка паром — азоти	ирование очек	азоти	рование	золотисто- коричневое	A TIAIN a TIAIN nanoA A TIAIN SuperA

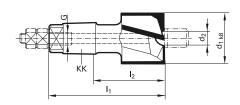

Артикул №	1602
Стандарт	стп
Режущий материал	HSS
Группа применения тв.сплава	
Покрытие	
Тип	KS 140
Допуск	
Группа скидок	104
Техническая информация на стр.	1368

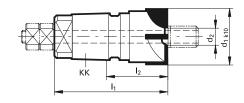
d1	d2	G	KK	11	12	Z	Код №	Цена/шт. в ЕВРО
ММ	ММ		мм	ММ	ММ			цена/шт. в съго
5,000	1,700		0	35,00	22,00	3	5,000	0
6,500	2,000		0	35,00	22,00	3	6,500	O
7,000	2,500		0	35,00	22,00	3	7,000	O
8,000	2,500		0	35,00	22,00	3	8,000	O
8,500	2,500	M 4	0	35,00	22,00	3	8,500	O
9,000	3,000	M 4	1	40,00	25,00	3	9,000	O
10,000	3,000	M 4	1	40,00	25,00	3	10,000	Ο
13,000	3,000	M 4	1	40,00	25,00	3	13,000	Ο
13,001	4,000	M 5	2	48,00	25,00	3	13,001	O
14,000	3,000	M 4	1	40,00	25,00	3	14,000	Ο
14,000	4,000	M 5	2	48,00	30,00	3	14,001	Ο
14,500	4,000	M 5	1	40,00	30,00	3	14,500	Ō
14,500	4,000	M 5	2	48,00	30,00	3	14,501	Ο
16,001	3,000	M 4	2	48,00	25,00	3	16,001	O
17,500	3,000	M 4	1	40,00	25,00	3	17,500	O
18,000	3,000	M 4	1	40,00	25,00	4	18,000	O
18,000	5,000	M 6	3	56,00	34,00	4	18,002	Ō
20,000	4,000	M 5	2	48,00	30,00	4	20,000	O
20,000	5,000	M 6	3	56,00	34,00	4	20,001	O
21,000	5,000	M 6	3	56,00	34,00	4	21,001	O
22,000	4,000	M 5	2	48,00	30,00	4	22,000	O
22,000	5,000	M 6	3	56,00	34,00	4	22,001	O
23,500	6,000	M 8	4	61,00	37,00	4	23,501	O
24,001	5,000	M 6	4	61,00	34,00	4	24,001	O
25,000	5,000	M 6	3	56,00	34,00	4	25,000	O
25,000	6,000	M 8	4	61,00	37,00	4	25,001	O
26,000	6,000	M 8	4	61,00	37,00	4	26,001	0
28,000	5,000	M 6	3	56,00	34,00	4	28,000	0
28,000	6,000	M 8	4	61,00	37,00	4	28,001	0
32,000	6,000	M 8	4	61,00	37,00	4	32,000	0
33,000	6,000	M 8	4	61,00	37,00	4	33,000	0
40,000	8,000 8,000	M10 M10	5 5	67,00 67,00	39,00 39,00	4 4	40,000	O O
45,000	0,000	WITO	3	07,00	39,00	4	45,000	
C TICN	©b Car	bo	(D) Cristall	F FIRE	/nanoFIRE	P AICrN	S TiN	S+ TiN+ MolyGlide Y Signum


Артикул №	1603
Стандарт	стп
Режущий материал	Твердый сплав
Группа применения тв.сплава	K15
Покрытие	\bigcirc
Тип	KS 108
Допуск	
Группа скидок	104
Техническая информация на стр.	1368

d1	d2	G	KK	l1	12	Z	Код №	 Цена/шт. в ЕЕ	RPO
мм	ММ		мм	ММ	ММ			цепалыт. в ст	51 0
5,900	2,400		0	35,00	22,00	3	5,900	0	
6,300	2,400		0	35,00	22,00	3	6,300	0	
6,800	2,400		0	35,00	22,00	3	6,800	O	
7,500	3,000		0	35,00	22,00	3	7,500	О	
10,000	3,700	M 4	1	40,00	40,00	3	10,000	O	
11,000	3,700	M 4	1	40,00	25,50	3	11,000	О	
15,000	5,500	M 5	2	48,00	30,00	3	15,000	O	
16,000	5,500	M 5	2	48,00	30,00	3	16,000	O	
17,000	5,500	M 5	2	48,00	30,00	3	17,000	Ō	
17,500	5,500	M 5	2	48,00	30,00	3	17,500	O	
18,000	6,600	M 6	3	56,00	34,00	3	18,000	Q	
20,000	6,600	M 6	3	56,00	34,00	3	20,000	O	
21,000	6,600	M 6	3	56,00	34,00	3	21,000	O	
22,000	6,600	M 6	3	56,00	34,00	3	22,000	O	
24,000	7,700	M 8	4	61,00	37,00	3	24,000	O	
25,000	7,700	M 8	4	61,00	37,00	3	25,000	O	
26,000	7,700	M 8	4	61,00	37,00	3	26,000	O	
33,000	7,700	M 8	4	61,00	37,00	3	33,000	0	
57,000	12,700	M12	5 1/2	68,00	39,00	3	57,000	O	
58,000	12,700	M12	6	70,00	39,00	3	58,000	O	
66,000	13,800	M12	6	70,00	39,00	3	66,000	Ö	
67,000	13,800	M12	6	70,00	39,00	3	67,000	O	
74,000	15,700	M14	7	80,00	46,00	3	74,000	O	
75,000	15,700	M14	7	80,00	46,00	3	75,000	О	
без	0.50		A 2007	ирование			эолотисто-	TAIN TAIN	







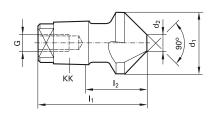
Артикул №	1604
Стандарт	стп
Режущий материал	Твердый сплав
Группа применения тв.сплава	M20
Покрытие	\bigcirc
Тип	KS 115
Допуск	
Группа скидок	104
Техническая информация на стр.	1368

d1	d2	G	KK	I1	12	Z	Код №	Houseway a ERRO
MM	мм		ММ	мм	мм			Цена/шт. в ЕВРО
55,000	12,700	M12	5 1/2	68,00	39,00	3	55,000	О
66,000	13,700	M12	6	70,00	39,00	3	66,000	O
67,000 73,000	13,800 15,700	M12 M14	6 7	70,00 80,00	39,00 46,00	3	67,000 73,000	0
74,000	15,700	M14	7	80,00	46,00	3	74,000	
								3
C TICN	Cb Ca	rbo (Cristall	F FIRE	/nanoFIRE	P AICrN	N S TiN	S+ TiN+ MolyGlide

d1	d2	KK	11	12	Z	Have/we a EDDO
ММ	ММ	ММ	ММ	ММ		Цена/шт. в EBPO
9,000	4,000	1	32,00	17,50	3	O
10,000	4,000	1	32,00	17,50	3	Ο
12,000	4,000	1	32,00	17,50	3	O O
15,000	5,600	2	37,00	19,00	4	O
37,000	9,600	5	56,00	28,50	4	O
54,000	10,600	5 1/2	58,00	30,00	4	O
57,000	10,600	5 1/2	58,00	30,00	4	Ο
60,000	11,800	6	62,00	31,00	4	O
66,000	11,800	6	62,00	31,00	4	
67,000	11,800	6	62,00	31,00	4	0

оправления в расприятильный в расприяти

азотирование


A TIAIN

a TiAIN nanoA A TiAIN SuperA

О без покрытия

обработка паром азотирование ленточек

Артикул №	1622
Стандарт	стп
Режущий материал	HSS
Покрытие	
Тип	KS 100
Допуск	
Группа скидок	104
Техническая информация на стр.	1369

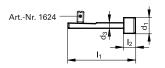
d1	d2	G	KK	l1	12	Z	Цена/шт. в ЕВРО
мм	ММ			ММ	ММ		цена/шт. в съго
12,000	3,000	M 4	1	33,00	18,00	3	О
15,000	4,000	M 5	2	39,00	21,00	3	О
20,000	5,000	M 6	3	46,00	24,00	3	
30,000	8,000	M 8	4	53,00	29,00	3	О
C TICN	©b Carbo	D Cristall	F FIRE/nan	oFIRE	P AlCrN	S TiN	S→ TiN+ MolyGlide Y Signum

Артикул № 1624 Стандарт **DIN 551** 104 Группа скидок Техническая информация на стр.



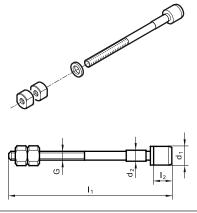
KK	G	l1	Код №	Цена/шт. в EBPO
		ММ		
0	M 2,5	3,00	2,500	О
Обез покрытия	Обрабо	отка паром (азотирован ленточек	ние азотирование золотисто- коричневое A TiAIN a TiAIN nanoA A TiAIN SuperA

Артикул №	1650	1651		
Стандарт		стп		
Группа скидок	104	104		
Техническая информация на стр.				


для КІ	<	Код №			Цена/ц	л. в EBPO		
0		1,000					0	
1		1,100		0			ŏ	
2		1,200		Ŏ			Ŏ	
3		1,300		0			0	
4		1,400		Q			O	
5 5 1/2		1,500 1,550		0			0	
6		1,600		\mathcal{O}			\mathcal{O}	
7		1,700		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
C TICN	©b Carbo	(D) Cristall	FIRE/nanoFIRE	P AICrN	S TIN	S+ TiN+	MolyGlide	Y Signum

MM	d1	d3	11	12	Код №	Цена/шт. в ЕВРО
1,800	ММ	мм	мм	ММ		цена/шт. в съго
2,000	1,700	1,700	28,00	5,00	1,700	
2,000 2,000 28,00 5,00 2,001 2,200 1,700 28,00 5,00 2,201 2,200 2,000 28,00 5,00 2,201 2,300 2,000 28,00 5,00 2,501 2,500 1,700 28,00 5,00 2,500 2,500 1,700 28,00 5,00 2,501 2,500 1,700 28,00 5,00 2,601 2,600 1,700 28,00 5,00 2,601 2,600 2,500 28,00 5,00 2,601 2,800 2,500 28,00 5,00 2,601 2,800 2,500 28,00 5,00 2,902 3,000 2,500 28,00 5,00 2,900 2,900 2,500 28,00 5,00 3,00 3,100 1,700 28,00 5,00 3,100 3,100 2,00 28,00 5,00 3,00 3,200 2,500 28,00 5,00 3,00 3,000 2,500 28,00 <td>1,800</td> <td>1,700</td> <td>28,00</td> <td>5,00</td> <td>1,800</td> <td>Ο</td>	1,800	1,700	28,00	5,00	1,800	Ο
2,200	2,000	1,700	28,00	5,00	2,000	
2,200		2,000				O
2,300 2,000 28,00 5,00 2,301						O
2,400 2,000 28,00 5,00 2,500 2,500 1,700 28,00 5,00 2,500 2,600 1,700 28,00 5,00 2,600 2,600 1,700 28,00 5,00 2,600 2,800 2,500 28,00 5,00 2,900 2,900 1,700 28,00 5,00 2,900 2,900 1,700 28,00 5,00 2,902 3,000 1,700 28,00 5,00 2,902 3,000 1,700 28,00 5,00 3,000 3,100 1,700 28,00 5,00 3,100 3,100 1,700 28,00 5,00 3,100 3,200 2,500 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,501 3,500 2,500 28,00 5,00 3,501 3,800 1,700 28,00 5,00 3,802 3,800 1,700 28,00	2,200	2,000	28,00	5,00	2,201	
2,500 1,700 28,00 5,00 2,501 2,500 2,000 28,00 5,00 2,501 2,600 1,700 28,00 5,00 2,601 2,600 2,000 28,00 5,00 2,601 2,800 2,500 28,00 5,00 2,902 2,900 1,700 28,00 5,00 2,902 3,000 1,700 28,00 5,00 3,000 3,100 1,700 28,00 5,00 3,100 3,100 2,000 28,00 5,00 3,101 3,100 2,500 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,202 3,400 2,500 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,501 3,800 1,700 28,00 5,00 3,802 3,800 2,500	2,300	2,000	28,00	5,00	2,301	O
2,500		2,000				O
2,600 1,700 28,00 5,00 2,600 2,600 2,000 28,00 5,00 2,601 2,800 2,500 28,00 5,00 2,900 2,900 1,700 28,00 5,00 2,902 3,000 1,700 28,00 5,00 3,000 3,100 1,700 28,00 5,00 3,100 3,100 1,700 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,202 3,300 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,800 3,800 1,700 28,00 5,00 3,802 3,800 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,001 4,000 1,700 28,00	2,500	1,700	28,00	5,00		\circ
2,600 2,000 28,00 5,00 2,601 2,800 2,500 28,00 5,00 2,902 2,900 1,700 28,00 5,00 2,902 3,000 1,700 28,00 5,00 3,000 3,100 1,700 28,00 5,00 3,100 3,100 2,500 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,202 3,300 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,401 3,500 2,500 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,800 3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,100 1,700 28,00	2,500	2,000	28,00	5,00	2,501	O
2,800 2,500 28,00 5,00 2,800 2,900 1,700 28,00 5,00 2,900 3,000 1,700 28,00 5,00 3,000 3,100 1,700 28,00 5,00 3,100 3,100 1,700 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,202 3,300 2,500 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,501 3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,501 3,800 1,700 28,00 5,00 3,802 3,800 1,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,001 4,100 1,700 28,00 5,00 4,100 4,200 2,500 28,00	2,600	1,700	28,00	5,00		O
2,900 1,700 28,00 5,00 2,900 2,900 2,500 28,00 5,00 2,902 3,000 1,700 28,00 5,00 3,000 3,100 1,700 28,00 5,00 3,100 3,200 2,500 28,00 5,00 3,202 3,300 2,500 28,00 5,00 3,202 3,400 2,000 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,702 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,802 3,800 2,500 28,00 5,00 3,802 3,800 1,700 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 1,700 28,00 5,00 4,001 4,100 1,700 28,00 5,00 4,202 4,200 1,700 28,00	2,600	2,000	28,00	5,00		O
2,900 2,500 28,00 5,00 2,902 3,000 1,700 28,00 5,00 3,000 3,100 1,700 28,00 5,00 3,100 3,100 2,000 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,401 3,500 2,500 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,100 1,700 28,00 5,00 4,100 4,200 1,700 28,00 5,00 4,202 4,300 1,700 28,00	2,800	2,500	28,00	5,00	2,802	Ο
3,000 1,700 28,00 5,00 3,000 3,100 1,700 28,00 5,00 3,100 3,100 2,000 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,202 3,300 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,802 3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,001 4,100 2,000 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,300 1,700 28,00 5,00 4,301 4,300 1,700 28,00	2,900	1,700	28,00	5,00	2,900	O
3,100 1,700 28,00 5,00 3,100 3,100 2,000 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,202 3,300 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,802 3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 1,700 28,00 5,00 4,001 4,100 1,700 28,00 5,00 4,100 4,200 1,700 28,00 5,00 4,200 4,300 1,700 28,00 5,00 4,200 4,300 1,700 28,00 5,00 4,301 4,300 2,500 28,00	2,900	2,500	28,00	5,00	2,902	O
3,100 2,000 28,00 5,00 3,101 3,200 2,500 28,00 5,00 3,202 3,300 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,100 4,100 1,700 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,300 1,700 28,00 5,00 4,300 4,300 2,500 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,301 4,300 2,500 28,00	3,000	1,700	28,00	5,00	3,000	Ο
3,200 2,500 28,00 5,00 3,202 3,300 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,001 4,100 1,700 28,00 5,00 4,100 4,100 1,700 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,302 4,400 1,700 28,00	3,100	1,700	28,00	5,00	3,100	Ο
3,300 2,500 28,00 5,00 3,302 3,400 2,000 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,802 3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,001 4,100 1,700 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400	3,100	2,000	28,00	5,00	3,101	Ο
3,400 2,000 28,00 5,00 3,401 3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,800 3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,001 4,000 2,000 28,00 5,00 4,100 4,100 1,700 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,300 1,700 28,00 5,00 4,300 4,300 2,500 28,00 5,00 4,300 4,300 2,500 28,00 5,00 4,301 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	3,200	2,500	28,00	5,00	3,202	Ο
3,500 2,000 28,00 5,00 3,501 3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,800 3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,001 4,000 2,000 28,00 5,00 4,100 4,100 1,700 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,300 4,300 1,700 28,00 5,00 4,300 4,300 2,500 28,00 5,00 4,300 4,300 2,500 28,00 5,00 4,301 4,400 1,700 28,00 5,00 4,400 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400	3,300	2,500	28,00	5,00	3,302	Ο
3,700 2,500 28,00 5,00 3,702 3,800 1,700 28,00 5,00 3,800 3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,100 4,100 1,700 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,301 4,400 1,700 28,00 5,00 4,400 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400	3,400	2,000	28,00	5,00	3,401	Ο
3,800 1,700 28,00 5,00 3,800 3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,100 4,100 1,700 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400	3,500	2,000	28,00	5,00	3,501	Ο
3,800 2,500 28,00 5,00 3,802 3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,100 4,100 1,700 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	3,700	2,500	28,00	5,00	3,702	
3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,001 4,100 1,700 28,00 5,00 4,100 4,100 2,000 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	3,800	1,700	28,00	5,00	3,800	Ο
3,900 2,500 28,00 5,00 3,902 4,000 1,700 28,00 5,00 4,000 4,000 2,000 28,00 5,00 4,001 4,100 1,700 28,00 5,00 4,100 4,100 2,000 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	3,800	2,500	28,00	5,00	3,802	0
4,000 2,000 28,00 5,00 4,001 4,100 1,700 28,00 5,00 4,100 4,100 2,000 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,400 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	3,900	2,500	28,00	5,00	3,902	Ο
4,100 1,700 28,00 5,00 4,100 4,100 2,000 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	4,000	1,700	28,00	5,00	4,000	O
4,100 2,000 28,00 5,00 4,101 4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	4,000	2,000	28,00	5,00	4,001	O
4,200 1,700 28,00 5,00 4,200 4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	4,100	1,700	28,00	5,00	4,100	
4,200 2,500 28,00 5,00 4,202 4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	4,100	2,000	28,00	5,00	4,101	O
4,300 1,700 28,00 5,00 4,300 4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	4,200	1,700	28,00	5,00	4,200	Ο
4,300 2,000 28,00 5,00 4,301 4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401		2,500				O
4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401	4,300	1,700	28,00	5,00	4,300	0
4,300 2,500 28,00 5,00 4,302 4,400 1,700 28,00 5,00 4,400 4,400 2,000 28,00 5,00 4,401						O
4,400 2,000 28,00 5,00 4,401		2,500				O
4,400 2,000 28,00 5,00 4,401 4,400 2,500 28,00 5,00 4,402 4,500 1,700 28,00 5,00 4,500	4,400	1,700	28,00	5,00	4,400	0
4,400 2,500 28,00 5,00 4,402 4,500 1,700 28,00 5,00 4,500	4,400	2,000	28,00	5,00	4,401	O
4,500 1,700 28,00 5,00 4,500	4,400	2,500	28,00	5,00	4,402	O
	4,500	1,700	28,00	5,00	4,500	O
Обез Обработка паром Оветочек Обработка паром Обработка паром Оветочек Обработка паром Обработка паром Оветочек Обработка паром Об		тия Оо	бработка і			 ■ азотирование ■ золотисто- коричневое ■ TiAIN ■ TiAIN nanoA ■ TiAIN SuperA

Артикул №	1615
Стандарт	стп
Группа скидок	104
Техническая информация на стр.	


d1	d3	11	12	Код №	Цена/шт. в ЕВРО
ММ	мм	мм	ММ		цена/шт. в съго
4,500	2,000	28,00	5,00	4,501	O
4,500	2,500	28,00	5,00	4,502	O O
4,700	2,000	28,00	5,00	4,701	O
4,700	2,500	28,00	5,00	4,702	O
4,800	2,500	28,00	5,00	4,802	O O
4,900	2,500	28,00	5,00	4,902	O
5,000	2,500	28,00	5,00	5,002	O O O
5,100	2,000	28,00	5,00	5,101	O
5,200	2,000	28,00	5,00	5,201	0
5,200	2,500	28,00	5,00	5,202	0
5,400	2,000	28,00	5,00	5,401	Ō
5,400	2,500	28,00	5,00	5,402	0
5,500 5,600	2,000 2,000	28,00 28,00	5,00 5,00	5,501 5,601	O O
5,600	2,500	28,00	5,00	5,602	Ö
5,700	2,500	28,00	5,00	5,702	
5,800	2,000	28,00	5,00	5,801	O O
5,900	2,000	28,00	5,00	5,901	ŏ
6,100	2,500	28,00	5,00	6,102	Ŏ
6,300	2,500	28,00	5,00	6,302	O O O
6,400	2,500	28,00	5,00	6,402	Ŏ
6,500	2,500	28,00	5,00	6,502	Ö
6,800	2,500	28,00	5,00	6,802	O
6,900	2,500	28,00	5,00	6,902	O
7,000	2,500	28,00	5,00	7,002	Ο
C TICN	(Cb) Carbo		(D) Cristall	FIRE/nan	oFIRE PAICrN STIN S+ TIN+ MolvGlide Y Signum

Артикул № Стандарт 1616 СТП

Группа скидок

104

Техническая информация на стр.

d1	для КК	d3	G	11	12	Код №
ММ	 	ММ		ММ	ММ	<u> </u>
3,200	1	3,000	М 3	60,00	7,00	3,200
3,300	1	3,000	М 3	60,00	7,00	3,300
3,400	1	3,000	М 3	60,00	7,00	3,400
3,600	1	3,000	М 3	60,00	7,00	3,600
3,800	1	3,000	М 3	60,00	7,00	3,800
3,900	1	3,000	М 3	60,00	7,00	3,900
4,000	1	3,000	М 3	60,00	7,00	4,000
4,100	1	3,000	М 3	60,00	7,00	4,100
4,100	2	4,000	M 4	71,00	10,00	4,101
4,300	1	3,000	M 3	60,00	7,00	4,300
4,300	2	4,000	M 4	71,00	10,00	4,301
4,400	2	4,000	M 4	71,00	10,00	4,401
4,600	2	4,000	M 4	71,00	10,00	4,601
4,700	2	4,000	M 4	71,00	10,00	4,701
4,800	2	4,000	M 4	71,00	10,00	4,801
5,000	1	3,000	М 3	60,00	7,00	5,000
5,100	1	3,000	М 3	60,00	7,00	5,100
5,200	1	3,000	М 3	60,00	7,00	5,200
5,200	3	5,000	M 5	81,00	10,00	5,202
5,300	1	3,000	М 3	60,00	7,00	5,300
5,300	3	5,000	M 5	81,00	10,00	5,302
5,400	1	3,000	М 3	60,00	7,00	5,400
5,400	2	4,000	M 4	71,00	10,00	5,401
5,400	3	5,000	M 5	81,00	10,00	5,402
5,500	1	3,000	M 3	60,00	7,00	5,500
5,500	2	4,000	M 4	71,00	10,00	5,501
5,600	2	4,000	M 4	71,00	10,00	5,601
5,600	3	5,000	M 5	81,00	10,00	5,602
5,700	2	4,000	M 4	71,00	10,00	5,701
5,700	3	5,000	M 5	81,00	10,00	5,702
5,800	1	3,000	M 3	60,00	7,00	5,800
5,800	2	4,000	M 4	71,00	10,00	5,801
5,900	3	5,000	M 5	81,00	10,00	5,902
6,000	4	6,000	M 6	88,00	12,00	6,003
6,100	1	3,000	M 3	60,00	7,00	6,100
6,100	2	4,000	M 4	71,00	10,00	6,101
6,100	3	5,000	M 5	81,00	10,00	6,102

-	Цена/шт. в ЕВРО
	O O
	O O
	O O O
	0
	0
	0
	0
	0
	0
	0
	0
	0

6,100

6,200

6,000

5,000

4

M 6

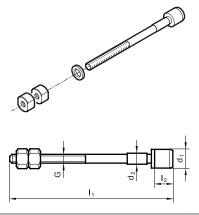
12,00

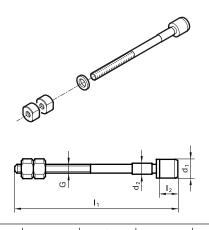
10,00

88,00

81,00

6,103

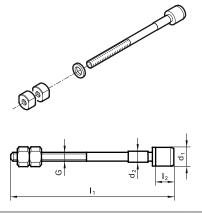

6,202


Артикул № 1616
Стандарт СТП
Группа скидок 104
Техническая информация на стр.

d1	для КК	d3	G	11	12	Код №		Цена/шт. в ЕВРО
ММ		ММ		мм	ММ			цена/шт. в ЕБРО
6,300	1	3,000	M 3	60,00	7,00	6,300		О
6,300	2	4,000	M 4	71,00	10,00	6,301		О
6,300	3	5,000	M 5	81,00	10,00	6,302		О
6,300	4	6,000	M 6	88,00	12,00	6,303		О
6,400	1	3,000	M 3	60,00	7,00	6,400		О
6,400	4	6,000	M 6	88,00	12,00	6,403		О
6,500	2	4,000	M 4	71,00	10,00	6,501		О
6,500	4	6,000	M 6	88,00	12,00	6,503		О
6,600	1	3,000	M 3	60,00	7,00	6,600		О
6,600	3	5,000	M 5	81,00	10,00	6,602		О
6,700	1	3,000	M 3	60,00	7,00	6,700		О
6,900	2	4,000	M 4	71,00	10,00	6,901		О
7,000	3	5,000	M 5	81,00	10,00	7,002		О
7,100	2	4,000	M 4	71,00	10,00	7,101		О
7,100	4	6,000	M 6	88,00	12,00	7,103		O
7,200	1	3,000	M 3	60,00	7,00	7,200		О
7,300	1	3,000	M 3	60,00	7,00	7,300		О
7,400	1	3,000	M 3	60,00	7,00	7,400		О
7,500	3	5,000	M 5	81,00	10,00	7,502		О
7,500	4	6,000	M 6	88,00	12,00	7,503		О
7,600	1	3,000	M 3	60,00	7,00	7,600		О
7,600	2	4,000	M 4	71,00	10,00	7,601		О
7,600	3	5,000	M 5	81,00	10,00	7,602		О
7,600	4	6,000	M 6	88,00	12,00	7,603		О
7,700	1	3,000	M 3	60,00	7,00	7,700		O
7,700	2	4,000	M 4	71,00	10,00	7,701		О
7,800	3	5,000	M 5	81,00	10,00	7,802		Ο
7,900	1	3,000	M 3	60,00	7,00	7,900		O
8,000	1	3,000	M 3	60,00	7,00	8,000		O
8,000	4	6,000	M 6	88,00	12,00	8,003		O
8,000	5	8,000	M 8	103,00	18,00	8,004		0
8,100	2	4,000	M 4	71,00	10,00	8,101		O
8,100	3	5,000	M 5	81,00	10,00	8,102		0
8,200	3	5,000	M 5	81,00	10,00	8,202		0
8,400	3	5,000	M 5	81,00	10,00	8,402		O
8,500	3	5,000	M 5	81,00	10,00	8,502		0
8,600	1	3,000	M 3	60,00	7,00	8,600		O
8,600	4	6,000	M 6	88,00	12,00	8,603		O
8,700	3	5,000	M 5	81,00	10,00	8,702		Ο
C TICN	©b Carbo	(D) Cr	istall	FIRE/nanoFIRE	P A	ICrN (S T	iN 🕞 TiN+ 🚺 MolyGlide 🕎 Signum

Артикул № 1616 СТП Стандарт 104 Группа скидок Техническая информация на стр.

d1	для КК	d3	G	11	12	Код №	Hous/ur p EBBO
ММ		ММ		мм	ММ		Цена/шт. в ЕВРО
8,700	4	6,000	M 6	88,00	12,00	8,703	О
8,800	1	3,000	M 3	60,00	7,00	8,800	Ο
8,800	2	4,000	M 4	71,00	10,00	8,801	O
8,800	4	6,000	M 6	88,00	12,00	8,803	Ο
9,000	2	4,000	M 4	71,00	10,00	9,001	Ο
9,000	4	6,000	M 6	88,00	12,00	9,003	O
9,000	5 1/2	9,000	M 9	106,00	20,00	9,005	O
9,200	2	4,000	M 4	71,00	10,00	9,201	O
9,300	2	4,000	M 4	71,00	10,00	9,301	O
9,400	1	3,000	M 3	60,00	7,00	9,400	Ο
9,400	2	4,000	M 4	71,00	10,00	9,401	O
9,500	3	5,000	M 5	81,00	10,00	9,502	O
9,600	1	3,000	M 3	60,00	7,00	9,600	O
9,700	2	4,000	M 4	71,00	10,00	9,701	O
9,700	3	5,000	M 5	81,00	10,00	9,702	O
9,800	1	3,000	M 3	60,00	7,00	9,800	O
9,800	2	4,000	M 4	71,00	10,00	9,801	Ο
10,000	1	3,000	M 3	60,00	7,00	10,000	O
10,000	2	4,000	M 4	71,00	10,00	10,001	O
10,000	3	5,000	M 5	81,00	10,00	10,002	O
10,000	4	6,000	M 6	88,00	12,00	10,003	O
10,100	3	5,000	M 5	81,00	10,00	10,102	O
10,200	1	3,000	M 3	60,00	7,00	10,200	O
10,200	2	4,000	M 4	71,00	10,00	10,201	O
10,200	3	5,000	M 5	81,00	10,00	10,202	O
10,300	2	4,000	M 4	71,00	10,00	10,301	O
10,400	2	4,000	M 4	71,00	10,00	10,401	O
10,500	2	4,000	M 4	71,00	10,00	10,501	O
10,500	5	8,000	M 8	103,00	18,00	10,504	0
11,000	4	6,000	M 6	88,00	12,00	11,003	0
11,000	5	8,000	M 8	103,00	18,00	11,004	0
11,000	6	10,000	M10	110,00	20,00	11,006	0
11,100	4	6,000	M 6	88,00	12,00	11,103	0
11,200	4	6,000	M 6	88,00	12,00	11,203	0
11,500	4	6,000	M 6	88,00	12,00	11,503	O O
11,500	5	8,000	M 8	103,00	18,00	11,504	
11,700	4	6,000	M 6	88,00	12,00	11,703	0
12,000	4	6,000	M 6	88,00	12,00	12,003	O O
12,300	4	6,000	M 6	88,00	12,00	12,303	U



Артикул №	1616				
Стандарт	стп				
Группа скидок	104				
Техническая информация на стр.					

C TICN

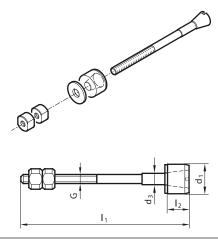
Cb Carbo

(D) Cristall

FIRE/nanoFIRE

d1	для KK	d3	G	l I1	12	Код №	Цена/шт. в ЕВРО
мм		ММ		мм	мм		цена/шт. в съго
12,500	4	6,000	M 6	88,00	12,00	12,503	О
12,500	5	8,000	M 8	103,00	18,00	12,504	Ο
12,600	4	6,000	M 6	88,00	12,00	12,603	0
12,700	4	6,000	M 6	88,00	12,00	12,703	Ο
13,000	4	6,000	M 6	88,00	12,00	13,003	О
13,000	5 1/2	9,000	M 9	106,00	20,00	13,005	Ö
13,000	6	10,000	M10	110,00	20,00	13,006	O
13,500	5	8,000	M 8	103,00	18,00	13,504	O
13,500	5 1/2	9,000	M 9	106,00	20,00	13,505	Ö
14,000	5	8,000	M 8	103,00	18,00	14,004	
14,000	5 1/2	9,000	M 9	106,00	20,00	14,005	O
14,000	6	10,000	M10	110,00	20,00	14,006	O
15,000	5	8,000	M 8	103,00	18,00	15,004	O
15,500	5	8,000	M 8	103,00	18,00	15,504	O O
16,000	6	10,000	M10	110,00	20,00	16,006	O
16,500	5 1/2	9,000	M 9	106,00	20,00	16,505	O
17,000	5	8,000	M 8	103,00	18,00	17,004	O
17,000	5 1/2	9,000	M 9	106,00	20,00	17,005	Q
18,000	6	10,000	M10	110,00	20,00	18,006	O
18,000	7	12,000	M12	124,00	22,00	18,007	O
19,000	6	10,000	M10	110,00	20,00	19,006	Ö
20,000	6	10,000	M10	110,00	20,00	20,006))
24,000	7	12,000	M12	124,00	22,00	24,007	O

P AlCrN

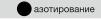

S TiN

MolyGlide

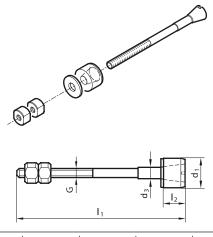
S+ TiN+

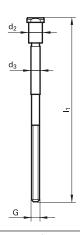
Y Signum

Артикул № 1617 СТП Стандарт 104 Группа скидок Техническая информация на стр.



d1	для КК	d3	G	11	l2	Код №	Цена/шт. в ЕВРО
ММ		ММ		ММ	ММ		цена/шт. в ЕБРО
11,500	2	4,000	M 4	71,00	10,00	11,500	O
12,000	2	4,000	M 4	71,00	10,00	12,000	Ο
12,000	3	5,000	M 5	81,00	10,00	12,001	O
13,500	2	4,000	M 4	71,00	10,00	13,500	O
13,500	4	6,000	M 6	88,00	12,00	13,502	Ο
14,000	2	4,000	M 4	71,00	10,00	14,000	O
14,500	3	5,000	M 5	81,00	10,00	14,501	Ο
15,000	2	4,000	M 4	71,00	10,00	15,000	O
15,500	2	4,000	M 4	71,00	10,00	15,500	O
15,500	3	5,000	M 5	81,00	10,00	15,501	O
17,500	5	8,000	M 8	103,00	18,00	17,503	O
18,500	4	6,000	M 6	88,00	12,00	18,502	O
19,000	3	5,000	M 5	81,00	10,00	19,001	Ο
20,000	4	6,000	M 6	88,00	12,00	20,002	Ο
20,000	5	8,000	M 8	103,00	18,00	20,003	O
21,000	3	5,000	M 5	81,00	10,00	21,001	O
21,000	4	6,000	M 6	88,00	12,00	21,002	O
21,000	5 1/2	9,000	M 9	106,00	20,00	21,004	O
22,000	3	5,000	M 5	81,00	10,00	22,001	Ο
22,000	4	6,000	M 6	88,00	12,00	22,002	О
22,000	5	8,000	M 8	103,00	18,00	22,003	O
22,000	5 1/2	9,000	M 9	106,00	20,00	22,004	Ο
22,500	4	6,000	M 6	88,00	12,00	22,502	Ο
22,500	5 1/2	9,000	M 9	106,00	20,00	22,504	Ο
23,000	4	6,000	M 6	88,00	12,00	23,002	O
24,000	5	8,000	M 8	103,00	18,00	24,003	Ο
24,500	5	8,000	M 8	103,00	18,00	24,503	O
24,500	5 1/2	9,000	M 9	106,00	20,00	24,504	Ο
24,500	6	10,000	M10	110,00	20,00	24,505	Ο
25,000	6	10,000	M10	110,00	20,00	25,005	O
25,500	4	6,000	M 6	88,00	12,00	25,502	Ο
25,500	5	8,000	M 8	103,00	18,00	25,503	Ο
25,500	5 1/2	9,000	M 9	106,00	20,00	25,504	O
26,000	6	10,000	M10	110,00	20,00	26,005	Ο
26,500	4	6,000	M 6	88,00	12,00	26,502	Ο
28,000	4	6,000	M 6	88,00	12,00	28,002	Ο
28,000	7	12,000	M12	124,00	22,00	28,006	Ο
29,500	5	8,000	M 8	103,00	18,00	29,503	Ο
30,000	5	8,000	M 8	103,00	18,00	30,003	O




Артикул №	1617
Стандарт	стп
Группа скидок	104
Техническая информация на стр	

d1	для КК	d3	G	11	12	Код №		Цена/шт. в ЕВРО
ММ		мм		ММ	MM			цена/шт. в ЕБРО
30,000	6	10,000	M10	110,00	20,00	30,005		О
30,500	5	8,000	M 8	103,00	18,00	30,503		О
31,000	5	8,000	M 8	103,00	18,00	31,003		Ō
31,500	5	8,000	M 8	103,00	18,00	31,503		Ō
32,000	5 1/2	9,000	M 9	106,00	18,00	32,004		Q
32,500	5	8,000	M 8	103,00	18,00	32,503		Ō
33,000	5	8,000	M 8	103,00	18,00	33,003		O O O
35,000	7	12,000	M12	124,00	22,00	35,006		Ō
35,500	6	10,000	M10	110,00	20,00	35,505		Q
38,000	5 1/2	9,000	M 9	106,00	20,00	38,004		Ō
39,000	5	8,000	M 8	103,00	18,00	39,003		Ō
42,000	5 1/2	9,000	M 9	106,00	20,00	42,004		O
50,000	7	12,000	M12	124,00	22,00	50,006		Ō
52,000	6	10,000	M10	110,00	20,00	52,005		O
56,000	7	12,000	M12	124,00	22,00	56,006		О
C TiCN	(Cb) Carbo	(D) Cr	rietall	FIRE/nanoFI	RE (P) A	ICrN (S T	iN (S+) TiN+ (M) MolyGlide (Y) Sianum

Артикул №	1647
Стандарт	стп
Группа скидок	104
Техническая информация на стр.	

для КК	d2	d3	G	11	Код №	Цена/шт. в EBPO
	мм	ММ		мм		цена/шт. в сого
1	5,000	3,000	М 3	70,00	3,000	O
2	6,000	4,000	M 4	85,00	4,000	O O
4	9,000	6,000	M 6	105,00	6,000	O
4	14,000	6,000	M 6	105,00	6,100	O
5	16,000	8,000	M8	120,00	8,100	O
5 1/2	20,000	9,000	M 9	130,00	9,100	
6	14,000	10,000	M10	135,00	10,000	\circ
6	20,000	10,000	M10	135,00	10,100	O
7	16,000	12,000	M12	160,00	12,000	O
7	25,000	12,000	M12	160,00	12,100	Ο

золотисто-коричневое

азотирование

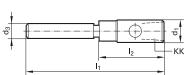
Код №

для КК

без обработка паром азотирование ленточек

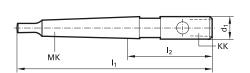
Артикул №	1648
Стандарт	стп
Группа скидок	104
Техническая информация на стр.	

d1	для КК	G	11	Hous/wr p EPPO
ММ			ММ	Цена/шт. в ЕВРО
6,500	1	M 4	35,00	O
8,000	2	M 5	40,00	O
10,000 12,000	3 4	M 6 M 8	46,00 52,00	
15,000	5	M10	59,00	
17,000	5 1/2	M12	61,00	Ŏ
19,000	6	M12	66,00	Ö
22,000	7	M14	87,00	Ο
C TICN	(Cb) Carbo		Cristall F	FIRE/nanoFIRE PAICrN STIN S+TIN+ MolyGlide YSignum



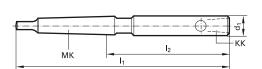
d1	для КК	G	11	Hous/wz. p. EDDO
мм			ММ	Цена/шт. в EBPO
6,500	1	М3	8,00	О
8,000	2	M 4	9,00	Ο
10,000	3	M 5	11,00	\circ
12,000	4	M 6	14,00) () () ()
15,000	5	M 8	14,00	Ο
17,000	5 1/2	M 9	19,00	0
19,000	6	M10	21,00	O O
22,000	7	M12	30,00	Ο
Обез покрытия	Ообрабо	отка паром	азотирован ленточек	ние азотирование золотисто- кормуневое A TiAIN a TiAIN nanoA A TiAIN SuperA
○ покрытия	Copaoi	oma napowi (— ленточек	азотирование коричневое ПАІК ТІАІК ПАІК ПАІК В ПАІК

Стандартная державка, короткая, с цилиндрическим хвостовиком


Артикул №	1625
Стандарт	стп
Группа скидок	104
Техническая информация на стр.	

	-		I ₁	-		W
d1	КК	d3	11	12	Код №	Цена/шт. в EBPO
ММ		мм	ММ	мм		
9,000	0	6,000	59,00	24,00	9,000	O
12,500	1	8,000	76,00	36,00	12,500	O O O O O
17,000	2	10,000	91,00	41,00	17,000	O O
21,000	3	12,000	109,00	49,00	21,000	O
28,000	4	14,000	112,00	52,00	28,000	O
32,000	5	16,000	125,00	65,00	32,000	O
C TiCN	(Cb) Carbo) (D) Cr	rietall (FIRE/nanoFII	RE P AIC	rN S TiN 😘 TiN+ M MolyGlide 🅜 Signum

Артикул №	1626
Стандарт	стп
Группа скидок	104
Техническая информация на стр.	



d1	KK	MK	11	12	Код №	House/www.p.EDDO
мм			ММ	ММ		Цена/шт. в ЕВРО
12,500	1	1	104,00	42,00	12,500	О
17,000	2	1	109,00	47,00	17,000	O
17,001	2	2	124,00	49,00	17,001	\bigcirc
21,000	3	1	117,00	55,00	21,000	O O
21,002	3	3	152,00	58,00	21,002	O
28,000	4	2	135,00	60,00	28,000	O O
28,001	4	3	155,00	61,00	28,001	Q
32,000	5	2	148,00	73,00	32,000	Ō
32,001	5	3	168,00	74,00	32,001)))
32,002	5	4	193,00	75,50	32,002	O
37,000	5 1/2	3	178,00	84,00	37,000	O
37,001	5 1/2	4	203,00	85,50	37,001	Ö
42,001	6	4	205,00	87,50	42,001	О
О без покрытия	Обрабо	отка паром	азотирова ленточек	ние	азотирование	ЗОЛОТИСТО- КОЛИНИВРОВ (a) TIAIN (a) TIAIN nanoA (A) TIAIN SuperA
покрытия	- ' "		— ленточек		'	коричневое

Артикул №	1628
Стандарт	стп
Группа скидок	104
Техническая информация на стр.	

d1	KK	MK	11	12	Код №
ММ			ММ	ММ	
12,500	1	1	142,00	80,00	12,500
17,000	2	1	152,00	90,00	17,000
17,001	2	2	167,00	92,00	17,001
21,001	3	2	185,00	110,00	21,001
28,000	4	2	190,00	115,00	28,000
28,001	4	3	210,00	116,00	28,001
32,000	5	3	235,00	141,00	32,000
37,000	5 1/2	3	255,00	161,00	37,000

Цена/шт. в ЕВРО
O O
0 0 0
0

Зенкеры бысторежущие (максимальный съем 1 мм)

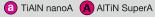
Цены в ЕВРО за указанное количество в зависимости от размера укороченного конуса в мм инструмента 0 / 1 2 / 3 4 / 5 5 1/2 / 6 7									
инструмента 0/1 2/3 4/5 51/2/6 7	в зависимости от размера укороченного конуса в мм								
3 • • • •									
4 • • • •									
6									
10									
16									
21									
31									

Обратные быстрорежущие зенкеры (максимальный съем 1 мм)

количество	в зав	Цены в Е висимости с	-	азанное ко укороченн		авмм
инструмента	10-20	>20-36	>36-48	>48-62	>62-80	>80-115
2						
3						
4						
6						
10						
16						
21						

Зенкеры твердосплавные (максимальный съем 1 мм)

(inditerinarianiani e a em 1 inim)							
количество -	в зави		•	ное количесте оченного кон			
инструмента	0/1	2/3	4/5	5 1/2 / 6	7		
2			•	•	•		
3							
4							
6			•		•		
10							
16							
21					•		
31							



Заводские акты измерений для зенкеров и зенковок

Службы контроля качества все чаще требуют от предприятий-изготовителей вместе с поставкой заказанного инструмента предоставлять т.н. акты измерений или сертификаты качества. И мы охотно выполняем это пожелание.

Т.к. составление актов измерений связано со значительными затратами (специальная маркировка определенного количества инструмента, оформление актов измерений, внесение результатов измерений в бланки), мы не хотели бы

начислять эти затраты в накладные расходы, и вынуждены добавлять в счет стоимость данных работ с учетом количества инструмента. Надеемся на Ваше понимание.

Количество инструмента, шт.	1	до 3	до 5	до 10	до 15	до 20	до 30	до 50	до 100
Контрольные параметры	Цена дана в EBPO за каждый измеряемый параметр для всего количества измеряемого инструмента								
Диаметр хвостовика	•	•	•	•	•		•		•
Диаметр головки зенковки									
⊒ лина L 1/2									
Тередний угол				•					
Задний угол		•		•			•	•	
Гочность расположения режущих кромок									
Эптический анализ		•							
Маркировка инструмента									
	Цен	на в ЕВРО за	измерение	всех контрол	ьных парам	етров всего і	измеряемого	инструмент	a
	•	•	•	лополнител	ьно за акт и	Спытаний	•	•	•
				HO1103111111101	5.15 5a an m				
Общая стоимость			_	1 _					l

